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Certified Robustness of Learning-based Static Malware Detectors
Anonymous Author(s)

ABSTRACT
Certified defenses are a recent development in adversarial machine

learning (ML), which aim to rigorously guarantee the robustness of

ML models to adversarial perturbations. A large body of work stud-

ies certified defenses in computer vision, where ℓ𝑝 norm-bounded

evasion attacks are adopted as a tractable threat model. However,

this threat model has known limitations in vision, and is not ap-

plicable to other domains—e.g., where inputs may be discrete or

subject to complex constraints. Motivated by this gap, we study

certified defenses for malware detection, a domain where attacks

against ML-based systems are a real and current threat. We con-

sider static malware detection systems that operate on byte-level

data. Our certified defense is based on the approach of randomized
smoothing which we adapt by: (1) replacing the standard Gauss-

ian randomization scheme with a novel deletion randomization

scheme that operates on bytes or chunks of an executable; and

(2) deriving a certificate that measures robustness to evasion at-

tacks in terms of generalized edit distance. To assess the size of

robustness certificates that are achievable while maintaining high

accuracy, we conduct experiments on malware datasets using a

popular convolutional malware detection model, MalConv. We are

able to accurately classify 91% of the inputs while being certifiably

robust to any adversarial perturbations of edit distance 128 bytes or

less. By comparison, an existing certification of up to 128 bytes of

substitutions (without insertions or deletions) achieves an accuracy

of 78%. In addition, given that robustness certificates are conserva-

tive, we evaluate practical robustness to several recently published

evasion attacks and, in some cases, find robustness beyond certified

guarantees.

CCS CONCEPTS
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its mitigation; • Computing methodologies→ Machine learning.
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1 INTRODUCTION
Machine learning (ML) is impacting many areas of computing

thanks to its ability to generalize to complex and unseen data.

However, vulnerability of ML models to evasion attacks (a.k.a. ad-

versarial examples) raises concerns about using these models in

practice. For example, successful attacks have been demonstrated

in general settings [30, 35] and domains such as computer vi-

sion [26, 33, 74], natural language [3, 29, 67], and malware detec-

tion [20, 21, 40, 42, 52, 60, 76, 77]. While a multitude of defenses

have been proposed against evasion attacks, they have historically

been broken by stronger attacks. For instance, adversarial training

with the Fast Gradient Sign Method [30] and defensive distillation

[59] are two defenses that were subsequently found to be ineffec-

tive [12, 79]. Six of nine defense papers accepted for presentation

at ICLR2018 were defeated months before the conference took

place [4]; another tranche of thirteen defenses were circumvented

shortly later [78]. Motivated by the arms race between attackers

and defenders, a line of work called certified robustness has emerged,

which aims to guarantee that a model is immune to a specified set

of attacks [66, 89].

Certified robustness has the greatest prominence in computer

vision. The state-of-the-art for ImageNet correctly classifies 71% of

a test set, while guaranteeing that the classifications are invariant

under ℓ2-norm bounded attacks of size 127/255 (half maximum

pixel intensity) [11]. In computer vision, ℓ𝑝 -norm bounded per-

turbations are commonly considered as a tractable approximation

for visual imperceptibility, despite known limitations. User studies

have shown that perturbations with small ℓ𝑝 -norm can be reliably

detected through casual inspection, while imperceptible changes

can cover large ℓ𝑝 distances [73]. For example, robust defenses can

be circumvented by image translation, rotation, blur, and pixela-

tion [28, 48]. Moreover, little is known about certified robustness

beyond the ℓ𝑝 threat model, in part because it has had little exami-

nation outside computer vision, with few exceptions [37, 58, 67, 92].

To address this gap in certified robustness research, we focus

on the static malware detection domain, where evasion attacks

are well established. Detecting malicious software (malware) is

critical in system security and has advanced considerably over the

past couple of decades to keep pace with novel threats, including

evasive malware variants and zero-day exploits. ML is starting to

play an important role in this advancement. It is now deployed

in many commercial systems [7, 39, 54, 80] and remains an active

area of research [1, 49, 65, 82]. Despite the apparent advantage of

ML in generalizing to novel malware, recent research has shown

that ML-based static malware detectors can be evaded by applying

adversarial perturbations to malware [20–22, 40, 42, 52, 60, 76, 77].

A variety of perturbations have been considered with different

effects at the semantic level, however all of them can be modeled

as inserting, deleting and/or substituting bytes. Certifying static

ML-based malware detectors within this general threat model—

where an attacker can perform byte-level edits—requires advancing

certified robustness research. While commercial malware detectors

1
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use both static and dynamic analysis [5, 7, 8, 80], published evasion

attacks are less developed for this hybrid setting. Overcoming static

malware detectors is a realistic goal for adversaries, as they may be

used to protect end-user systems [16, 83] and obtaining white-box

access may be trivial (e.g., by purchasing a license).

In this paper, we seek to answer three research questions at the

nexus of certified robustness and malware detection.

(Q1) How can certified robustness methods be adapted to the mal-
ware detection domain?

Existing certified robustness methods are designed for models

that operate on fixed-dimensional numeric arrays, under the as-

sumption that an attacker can only make perturbations with small,

bounded ℓ𝑝 -norm. While these assumptions are relatively accepted

for the vision domain, they are fundamentally incompatible with

malware detection, where inputs are variable-length byte arrays—

the most general representation of an executable. To this end, we

consider an attacker that perturbs a file by inserting, deleting or

substituting bytes, in place of additive perturbations. We describe

this new problem setting for certified robustness in Section 2, be-

fore proposing a novel certification mechanism in Section 3. Our

certification mechanism, called randomized deletion smoothing

(RS-Del), adapts randomized smoothing [17] by replacing Gauss-

ian input randomization with randomized deletions, and may be

of independent interest. We customize our mechanism for several

threat model variations, and make practical optimizations for com-

putational efficiency.
1

While certified robustness provides a theoretical framework for

measuring the robustness of a model to attacks, it does not provide

any guarantees about accuracy. We therefore ask,

(Q2) What kind of tradeoffs are possible between accuracy and
robustness guarantees for malware detection?

To answer this question, we evaluate our randomized deletion

smoothing mechanism on two malware detection datasets using

a deep malware detection model [64] in Section 4.2. By varying

the aggressiveness of smoothing we examine tradeoffs between

robustness certification and accuracy. We find that it is possible to

maintain a high accuracy of 91% while guaranteeing robustness

to adversarial edits of up to 128 bytes on average, which exceeds

edit distances of two published evasion attacks [20, 22]. This sug-

gests potential for operationalizing certifications of static malware

detection, in some cases.

It is well-known that certified robustness guarantees are conser-

vative due to model independence or relying on bounds that are

not tight in general [25]. Consequently, we ask,

(Q3) Howwell does our randomized deletion smoothingmechanism
protect against evasion attacks in practice?

To answer this question, we apply five published evasion attacks

[20, 21, 42, 52, 57] against an undefended model and a model em-

ploying our randomized deletion smoothing (RS-Del). We find that

RS-Del is surprisingly helpful at delivering additional robustness

beyond what is guaranteed. That is, even though the distance of at-

tack perturbations is beyond the certified radius of RS-Del, it is still
effective at distinguishing malware and benign samples. For exam-

ple, the attack success rate against RS-Del is 0% compared to 12.9%

1
We will release an open-source implementation of our mechanisms upon publication.

for an unprotected classifier when up to 17.2KB of a file is perturbed

with a displacement attack [52]. This is orders of magnitude larger

than the edit distance radius of certification returned by RS-Del.
Full attack experimental results are presented in Section 4.3, where

we highlight cases where RS-Del’s defense capabilities are effective
and where further protection is necessary.

2 PROBLEM FORMULATION
In this section, we provide background on static malware detec-

tion, specify a threat model for evasion attacks on static malware

detectors, and introduce certified robustness in the context of static

malware detection, where inputs are represented as raw byte arrays.

2.1 Static malware detection
We model a malware detector as a function 𝑓 : X → {0, 1} that
returns 1 if the input executable file x ∈ X is predicted to be mali-

cious and 0 otherwise. We assume executable files are represented

as byte arrays, where X = {0, . . . , 255}★ is the space of byte arrays

of arbitrary length. For compatibility with randomized smoothing

(discussed in Section 3), we assume 𝑓 is able to make predictions

for incomplete files where chunks of bytes have been arbitrarily

removed. This assumption can be satisfied by machine learning-

based static malware detectors, as demonstrated in our experiments

(Section 4). We note that dynamic malware detectors do not satisfy

this assumption, since they monitor behavior during execution,

which is not generally possible for an incomplete executable file.

2.2 Threat model
We next outline the modeled attacker’s goals, capabilities, and in-

formation about the detector [6].

2.2.1 Attacker’s objective. We consider evasion attacks, where the

attacker’s objective is to transform an executable file x so that it is

misclassified by a malware detector 𝑓 . To ensure the attacked file x̄
is useful after evading detection, we require that it is functionally-
equivalent to the original file x. We focus on evasion attacks that

misclassify malware as benign in our experiments, as these attacks

dominate prior work [22]. However, for generality we also consider

attacks in the opposite direction—where a benign file is misclassi-

fied as malicious—when outlining our threat model and deriving

robustness certificates.

2.2.2 Attacker’s capability. We measure the attacker’s capability

in terms of the number of elementary edits they can make to the

original file x. If the attacker is capable of making up to 𝑐 elementary

edits, then they can transform x into any file in the edit distance

ball of radius 𝑐 centred on x:

A𝑐 (x) = {x̄ ∈ X : dist𝑂 (x, x̄) ≤ 𝑐}. (1)

Here dist𝑂 (x, x̄) denotes the edit distance from the original file x to
the attacked file x̄ under the set of edit operations (ops) 𝑂 . Unless

otherwise specified, we assume 𝑂 consists of byte-level deletions

(del), insertions (ins) and substitutions (sub), however our analysis
covers attackers that are constrained to a subset of these operations

as outlined in Table 1. We also consider attackers than perform

instruction-level edits in Section 3.3.3.

2
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We note that edit distance is a reasonable proxy for the cost of

running evasion attacks that iteratively apply localized functionality-

preserving edits (e.g., [20, 52, 57, 60, 76]). For these attacks, the edit

distance scales roughly linearly with the number of attack itera-

tions, and therefore the adversary has an incentive to minimize

edit distance. While attacks do exist that make large edits of or-

der megabytes in size (e.g., [21]), we believe that an edit distance-

constrained threat model is an important step towards realistic

threat models for certified malware detection. (To examine the ef-

fect of large edits on robustness we include theGAMMA attack [21]

in our Section 4.3 experiments.)

Remark 2.1. The setA𝑐 (x) overestimates the capability of an edit
distance-constrained attacker, because it may include files that are

not functionally equivalent to x. For example, A𝑐 (x) may include

files that are not malicious (assuming x is malicious) or files that are

not valid executables. This poses no problem for certification, since

overestimating an attacker’s capability merely leads to a stronger

certificate than required. Indeed, overestimating the attacker’s ca-

pability seem necessary, as functionally equivalent files are difficult

to specify, let alone analyze.

2.2.3 Malware detector access. We consider attackers with black-

or white-box access to the malware detector. In the black-box set-

ting, the attacker may make an unlimited number of queries to

the malware detector without observing its internal operation. We

permit access to detection confidence scores, which are returned

alongside predictions even in the black-box setting. In thewhite-box

setting, the attacker can additionally inspect the malware detec-

tor’s source code. Such a strong assumption is needed for white-box

attacks that compute loss gradients with respect to the detector’s

internal representations of the input file [42, 52].

2.3 Certified robustness
To provide assurance that a malware detector is robust to evasion at-

tacks, we adapt the concept of certified robustness from the machine

learning literature. Most existing definitions of certified robustness

aim to guarantee that a classifier’s prediction is stable, even if the

input is perturbed within an ℓ𝑝 neighborhood [17, 43, 44, 89]. This

definition is ill-suited for malware detection because it implicitly

assumes inputs are fixed-dimension numeric arrays, and that the

array values can be perturbed continuously. To adapt the definition,

we replace the ℓ𝑝 neighborhood with an edit distance neighborhood

concordant with our threat model. This is formalized below.

Definition 2.2. An edit distance robustness certificate of radius 𝑟 for
a malware detector 𝑓 at input file x is a guarantee that 𝑓 (x) = 𝑓 (x′)
for all x′ in the edit distance neighborhood

N𝑟 (x) = {x′ ∈ X : dist𝑂 (x′, x) ≤ 𝑟 }.
To see how this certificate can provide assurance against eva-

sion attacks, consider the following scenario. Suppose an edit-

constrained attacker produces an attacked file x̄ ∈ A𝑐 (x) based
on an original file x. The attacked file is subsequently submitted

to a malware detector, which produces an edit distance robustness

certificate of radius 𝑟 . If 𝑟 ≥ 𝑐 then x must be in the edit distance

neighborhoodN𝑟 (x̄), which implies 𝑓 (x) = 𝑓 (x̄). Hence if the mal-

ware detector’s prediction is correct for the original file x it cannot

be fooled by the “attacked” file x̄.

When designing certification mechanisms in this paper, we

adopt the so-called “conservative” or “sound but incomplete” para-

digm [17]. Under this paradigm, a mechanism may accept or decline
to issue an edit distance certificate of a given radius 𝑟 . If the mech-

anism accepts, the guarantee described in Definition 2.2 must hold,

possibly with high probability. On the other hand, if the mechanism

declines, it makes no statement about whether the guarantee holds.

3 METHODOLOGY
In this section, we address research question Q1 by adapting the

certification approach of randomized smoothing to the malware

detection domain. To begin, in Section 3.1, we review randomized

smoothing and propose a deletion randomization scheme called RS-
Del that is alignedwith our edit distance threat model. In Section 3.2,

we derive a closed form edit distance certificate for RS-Del using
lower bounds on the detection confidence. Finally, in Section 3.3,

we present practical algorithms for probabilistic certification and

discuss how to exploit information from a disassembler to enhance

RS-Del, both in terms of the deletion randomization scheme and

the semantics of the edit distance certificate.

3.1 RS-Del: Randomized deletion smoothing
In robust machine learning, smoothing is a technique that averages

a model’s output with respect to randomized inputs. It has been

applied as a heuristic defense against evasion attacks in the vision

domain [10, 50], owing to its ability to reduce a model’s sensitivity

to noise or fine-scale variations. More recently, it has been shown to

achieve certified robustness in a framework known as randomized
smoothing [17, 43, 47, 71]. Most existing applications of randomized

smoothing employ additive Gaussian or Laplace noise when ran-

domizing inputs, yielding ℓ𝑝 robustness certificates. However, these

randomization schemes are inappropriate for malware detection, as

they erroneously assume input byte values are numeric when they

are best treated as categorical, and they erroneously assume input

files are the same size, even though file sizes may vary. To address

these incompatibilities, we propose randomized deletion smoothing
(RS-Del) which randomizes inputs by deleting bytes, while yielding

edit distance robustness certificates.

3.1.1 Smoothed malware detectors. We begin with a generic for-

mulation of randomized smoothing following Lee et al. [44]. Con-

sider a “base” malware detector 𝑓
b
and a randomization scheme

𝜙 : X → D(X) that maps an input file to a distribution over the

space of input files. Let

𝑝𝑦 (x; 𝑓
b
) = Pr

z∼𝜙 (x)
[𝑓

b
(z) = 𝑦] (2)

denote the probability that 𝑓
b
predicts 𝑦 for an input file x random-

ized according to 𝜙 (we omit the dependence on 𝑓
b
where it is clear

from context). The smoothed malware detector 𝑓 composed from

𝑓
b
and 𝜙 is defined as

𝑓 (x) = arg max

𝑦∈{0,1}
𝑝𝑦 (x) − 𝜂𝑦 (3)

where 𝜂1 ∈ (0, 1) is a decision threshold and 𝜂0 := 1 − 𝜂1. In

words, the smoothedmalware detector predicts𝑦 if the base detector

predicts 𝑦 with probability 𝑝𝑦 (x) exceeding 𝜂𝑦 for random inputs

drawn from 𝜙 (x).
3
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Remark 3.1. Previous definitions of randomized smoothing do

not incorporate a tunable decision threshold 𝜂1 and effectively

assume 𝜂1 = 𝜂0 = 1

2
. A tunable decision threshold is useful for

malware detection as a way of controlling false positive and false

negative errors. It can be tuned in addition to any decision thresh-

olds associated with the base detector.

3.1.2 Design considerations for 𝜙 . The behavior of a smoothed

malware detector is strongly influenced by the choice of randomiza-

tion scheme 𝜙 . When choosing a scheme, we must trade off utility

(accuracy) and robustness. Practically, we can improve utility by

choosing a scheme that adds less noise to the input, especially

noise that would obscure or destroy information relevant to detec-

tion. On the other hand, we can improve robustness by choosing

a scheme that adds more noise, so that neighboring randomized

inputs become indistinguishable to the base detector. More pre-

cisely, we would like the statistical distance between 𝜙 (x) and 𝜙 (x̄)
to be small for any input files x and x̄ that are close in edit dis-

tance. Secondary to robustness and accuracy considerations, we

also consider the efficiency of certification. Deriving a tight com-

putationally efficient certificate may be difficult or impossible for

some randomization schemes—in the worst case it may be difficult

to outperform certification by brute force search.

3.1.3 Deletion randomization scheme. To satisfy the design consid-

erations, we propose a randomization scheme that edits an input

file by deleting bytes. We specify the scheme as a two-stage pro-

cess. In the first stage, a random edit 𝜖 is drawn from a distribution

𝐺 (x) over the space of possible edits to x, denoted E(x). Since
we only consider byte deletions, any edit can be represented as a

set of byte indices in {1, . . . , |x|} that remain post-deletion. Thus

E(x) = 2
{1,..., |x | }

. We set the distribution 𝐺 (x) so that each byte is

deleted i.i.d. with probability 𝑝del ∈ (0, 1):

Pr[𝐺 (x) = 𝜖] =
|x |∏
𝑖=1

𝑝
[𝑖∉𝜖 ]
del (1 − 𝑝del)

[𝑖∈𝜖 ] . (4)

In the second stage, the edit 𝜖 drawn from 𝐺 (x) is applied to x to

yield a new file:

z = apply(x, 𝜖) B
(
𝑥𝜖 (𝑖 )

)
𝑖=1... |𝜖 |

, (5)

where 𝜖 (𝑖 ) denotes the 𝑖-th smallest element in 𝜖 . The new file z is
guaranteed to be a subsequence of x. Putting both stages together,

the distribution of our randomization scheme 𝜙 satisfies

Pr[𝜙 (x) = z] =
∑︁

𝜖∈E (x)
Pr[𝐺 (x) = 𝜖]1

apply(x,𝜖 )=z . (6)

Remark 3.2. It may be surprising that our randomization scheme

does not use the full set of edit ops 𝑂 available to the attacker.

It is a misconception that smoothing requires perfect alignment

between the randomization scheme and the threat model. All that

is needed from a robustness perspective, is for the scheme to return

distributions that are statistically close for any pair of inputs that

are neighboring according to the threat model; this can be achieved

solely with deletion. In fact, perfect alignment is known to be sub-

optimal for some ℓ𝑝 threat models [91]. Our deletion scheme leads

to a tractable robustness certificate covering the full set of edit

ops (see Section 3.2). Moreover while benefiting robustness, our

empirical results show that our deletion scheme has only a minor

impact on accuracy (see Section 4.2). Finally, our deletion scheme

reduces the size of the input file, which is beneficial for computa-

tional efficiency (see Appendix D). This is not true in general for

schemes employing insertions/substitutions.

3.2 Edit distance certificate
We now turn to the problem of deriving an edit distance robustness

certificate for RS-Del. We specify information the certificate may

depend on in Section 3.2.1. We then present the derivation in three

parts: Section 3.2.2 provides an outline, Section 3.2.3 derives a lower

bound on the probability score of RS-Del and Section 3.2.4 uses

the bound to complete the derivation. All proofs are presented in

Appendix B.

3.2.1 Information availability. Following prior work [17, 43], we

assume limited information about RS-Del is available when com-

puting a certificate. This is to both improve tractability and ensure

the certificate does not depend on architectural details of the base

detector used with RS-Del. Concretely, let x̄ ∈ X be a (possibly

adversarial) input file for which we would like to certify the ro-

bustness of RS-Del, denoted 𝑓 . The only information we use when

deriving the certificate is: (1) the input file x̄, (2) the prediction

of RS-Del 𝑦 = 𝑓 (x̄), (3) the probability score of RS-Del for the
prediction 𝜇𝑦 = 𝑝𝑦 (x̄; 𝑓

b
), (4) the decision threshold 𝜂𝑦 of RS-Del,

and (5) the deletion randomization scheme 𝜙 specified in (6).

3.2.2 Derivation outline. We derive edit distance robustness cer-

tificates aligned with our threat model (see Section 2.2). In doing so,

we consider attackers with varying constraints on the edit ops 𝑂

they can apply. The main results are summarized in Table 1, where

we provide the radius 𝑟 of the certificate as a function of 𝑦, 𝜇𝑦 , 𝜂𝑦
and 𝑝del.

To set the stage for the derivation, recall from Definition 2.2 that

an edit distance robustness certificate of radius 𝑟 can be issued for

an input x̄ iff 𝑓 (x̄) = 𝑓 (x) for all x in the edit distance neighbor-

hoodN𝑟 (x̄). This condition is equivalent to requiring that RS-Del’s
probability scores for 𝑦 exceed the detection threshold 𝜂𝑦 in the

neighborhood, i.e.

min

x∈N𝑟 (x̄)
𝑝𝑦 (x; 𝑓

b
) > 𝜂𝑦 . (7)

While it is theoretically possible to solve the minimization problem

above, it is technically infeasible due to the size of the neighbor-

hood and the apparent need to resort to brute force search (see

Appendix A). We therefore replace the LHS of (7) by a tractable

lower bound, noting that if the resulting inequality holds, then (7)

holds and we may issue a certificate.

We proceed with the derivation in two steps. In the first step,

covered in Section 3.2.3, we replace the objective of the minimiza-

tion problem 𝑝𝑦 (x; 𝑓
b
) by a lower bound. Then in the second step,

covered in Section 3.2.4, we complete the derivation by minimizing

the lower bound over the edit distance neighborhood.

3.2.3 Lower bound on the probability scores. We seek a lower

bound on the RS-Del’s probability score 𝑝𝑦 (x; 𝑓
b
) that satisfies

the following requirements: (1) the bound must hold for all x in

4
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Table 1: Edit distance certificates as a function of the edit ops𝑂 the attacker is capable of, the strength of deletion smoothing 𝑝del,
the confidence 𝜇𝑦 of RS-Del in its prediction 𝑦, and the decision threshold 𝜂𝑦 .

Edit ops 𝑂 {ins} {del} {del, ins} {del, ins, sub} {sub} {ins, sub} {del, sub}

Edit dist. name Episode [18] – LCS Levenshtein Hamming – –

Certified

radius 𝑟

⌊
log

1−𝜇𝑦
1−𝜂𝑦

log𝑝del

⌋ ⌊
log

𝜂𝑦

𝜇𝑦

log𝑝del

⌋ ⌊
log

𝜂𝑦

𝜇𝑦

log𝑝del

⌋ ⌊
log(1+𝜂𝑦−𝜇𝑦 )

log𝑝del

⌋ ⌊
log(1+𝜂𝑦−𝜇𝑦 )

log𝑝del

⌋ ⌊
log(1+𝜂𝑦−𝜇𝑦 )

log𝑝del

⌋ ⌊
log(1+𝜂𝑦−𝜇𝑦 )

log𝑝del

⌋
the edit distance neighborhood N𝑟 (x̄), and (2) the bound must be

independent of the base detector 𝑓
b
which is assumed unknown.

To begin, we write 𝑝𝑦 (x; 𝑓
b
) as a sum over the edit space by

combining (2) and (6):

𝑝𝑦 (x; 𝑓
b
) =

∑︁
𝜖∈E (x)

𝑠 (𝜖, x; 𝑓
b
), (8)

with 𝑠 (𝜖, x; 𝑓
b
) = Pr [𝐺 (x) = 𝜖] 1𝑓

b
(apply(x,𝜖 )=𝑦) . (9)

Wewould like to rewrite this in terms of the known probability score

at x̄, 𝜇𝑦 = 𝑝𝑦 (x̄; 𝑓
b
) = ∑

𝜖∈E (x̄) 𝑠 (𝜖, x̄; 𝑓
b
). To do so, we identify

pairs of edits 𝜖 to x and 𝜖 to x̄ for which the corresponding terms

𝑠 (𝜖, x; 𝑓
b
) and 𝑠 (𝜖, x̄; 𝑓

b
) are proportional.

Lemma 3.3 (Eqivalent edits). Let z★ be a longest common
subsequence (LCS) [86] of x and x̄, and let 𝜖★ ∈ E(x) and 𝜖★ ∈ E(x̄)
be any edits such that apply(x, 𝜖★) = apply(x̄, 𝜖★) = z★. Then there
exists a bijection𝑚 : 2

𝜖★ → 2
𝜖★ such that apply(x, 𝜖) = apply(x̄, 𝜖)

for any 𝜖 ⊆ 𝜖★ and 𝜖 = 𝑚(𝜖). Furthermore, we have 𝑠 (𝜖, x; 𝑓
b
) =

𝑝
|x |− |x̄ |
del 𝑠 (𝜖, x̄; 𝑓

b
).

Applying this proportionality result to all pairs of edits 𝜖, 𝜖 re-

lated under the bijection𝑚 yields:∑︁
𝜖∈2

𝜖★

𝑠 (𝜖, x; 𝑓
b
) = 𝑝

|x |− |x̄ |
del

∑︁
𝜖∈2

𝜖★

𝑠 (𝜖, x̄; 𝑓
b
).

Thus we can achieve our goal of writing 𝑝𝑦 (x; 𝑓
b
) in terms of 𝜇𝑦 =

𝑝𝑦 (x̄; 𝑓
b
). A simple rearrangement of terms gives:

𝑝𝑦 (x; 𝑓
b
) = 𝑝

|x |− |x̄ |
del

©«𝜇𝑦 −
∑︁

𝜖∉2
𝜖★

𝑠 (𝜖, x̄; 𝑓
b
)ª®¬ +

∑︁
𝜖∉2

𝜖★

𝑠 (𝜖, x; 𝑓
b
).

(10)

This representation is convenient for deriving a lower bound. Specif-

ically, we can drop the sum over 𝜖 ∉ 2
𝜖★

and upper-bound the sum

over 𝜖 ∉ 2
𝜖★

to obtain a lower bound that is independent of 𝑓
b
.

Theorem 3.4 (Lower bound). Let z★ be a longest common sub-
sequence of x and x̄, and assume 𝜇𝑦 = 𝑝𝑦 (x̄; 𝑓

b
). Then

𝑝𝑦 (x; 𝑓
b
) ≥ lb(x; x̄, 𝜇𝑦) = 𝑝

|x |− |x̄ |
del

(
𝜇𝑦 − 1 + 𝑝 |x̄ |− |z

★ |
del

)
. (11)

3.2.4 Edit distance certificate. To complete the derivation we mini-

mize the lower bound in (11) over the edit distance neighborhood:

𝜌 (x̄; 𝜇𝑦) = min

x∈N𝑟 (x̄)
lb(x; x̄, 𝜇𝑦) . (12)

Recall that we are interested in general edit distance neighbor-

hoods, where the edit ops 𝑂 used to define the edit distance may

be constrained—e.g., deletions may not be allowed in the threat

model of the attacker. As a step towards solving the minimization

problem, it is therefore useful to express lb(x; x̄, 𝜇𝑦) in terms of the

edit ops, as shown below.

Corollary 3.5. Suppose there exists an edit path from x to x̄ that
consists of 𝑛sub substitutions, 𝑛ins insertions and 𝑛del deletions such
that 𝑛sub + 𝑛ins + 𝑛del = dist𝑂 (x, x̄) and 𝑛sub, 𝑛ins, 𝑛del ≥ 0. Then

lb𝑦 (x; x̄, 𝜇𝑦) = 𝑝
𝑛del−𝑛ins
del

(
𝜇𝑦 − 1 + 𝑝𝑛sub+𝑛ins

del

)
.

This parameterization of the lower bound enables us to re-express

(12) as an optimization problem over counts of edit ops:

𝜌 (x̄; 𝜇𝑦) = min

𝑛sub,𝑛ins,𝑛del∈C𝑟
𝑝
𝑛del−𝑛ins
del

(
𝜇𝑦 − 1 + 𝑝𝑛sub+𝑛ins

del

)
, (13)

where C𝑟 encodes constraints on the set of counts. If the edit ops

𝑂 are unconstrained so that insertions, deletions and substitutions

are all allowed, then the edit distance is known as the Levenshtein
distance and C𝑟 consists of sets of counts that sum to 𝑟 . We solve

the minimization problem for this case below.

Theorem 3.6 (Levenshtein distance certificate). Suppose
an RS-Del malware detector 𝑓 predicts 𝑦 with probability score 𝜇𝑦
for input file x̄. Then a lower bound on the malware detector’s proba-
bility score within the Levenshtein distance neighborhood N𝑟 (x̄) is
𝜌 (x̄; 𝜇𝑦) = 𝜇𝑦 − 1 + 𝑝𝑟del. It follows that the largest radius at which
we can issue a Levenshtein distance robustness certificate is

𝑟 =

⌊
log

(
1 + 𝜂𝑦 − 𝜇𝑦

)
log𝑝del

⌋
.

This is known as the certified radius.

It is straightforward to adapt this result to account for constraints

on the edit ops 𝑂 . Results for all combinations of edit ops are

provided in Table 1.

3.3 Practical considerations
Before we can implement RS-Del and the certificate developed in

the previous sections, we must consider several practical issues.

First, given that evaluating RS-Del exactly requires brute force enu-

meration over all possible deletions, we present a sampling-based

approximation in Section 3.3.1 and adapt the robustness certificate

to account for sampling error. Second, in Section 3.3.2, we show

how to train a base malware detector for use RS-Del. And third, in

Section 3.3.3, we discuss how to use information from a disassem-

bler to improve the semantics of the threat model and certificates. In

particular, we advocate for associating groups of bytes with instruc-

tions, and constraining the threat model to operate on such bytes

as one unit. This can prune invalid instructions from the attacker’s
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action space, leading to larger certified regions. We note that the

sampling-based approximation and input randomization training

described in Sections 3.3.1 and 3.3.2 follow standard practice in the

randomized smoothing literature [17].

3.3.1 Approximating RS-Del via sampling. To evaluate and certify

RS-Del at input x̄, we must compute the probability scores 𝜇𝑦 =

𝑝𝑦 (x̄) defined in (2). Computing the scores exactly is infeasible,

since it is necessary to enumerate all subsequences of x̄ and their

probabilities under 𝜙 (x̄), which takes exponential time in |x̄|. We

therefore follow standard practice in randomized smoothing [17]

and approximate the score 𝜇𝑦 using a sample of randomized inputs

{z1, . . . , z𝑛} drawn i.i.d. from 𝜙 (x̄):

𝜇𝑦 =
1

𝑛

𝑛∑︁
𝑖=1

1𝑓
b
(z𝑖 )=𝑦 . (14)

We can estimate a lower bound on 𝜇𝑦 to account for sampling

error by applying a binomial test:

𝜇𝑦 = LowerConfBound
(∑𝑛

𝑖=1
1𝑓

b
(z𝑖 )=𝑦, 𝑛, 𝛼

)
(15)

where LowerConfBound(𝑘, 𝑛, 𝛼) returns a one-tailed 1 − 𝛼 confi-

dence interval for 𝜇𝑦 given a sample 𝑘 ∼ Binomial(𝑛, 𝜇𝑦). We use

this lower bound in Algorithm 1 to compute a certificate that holds

with probability 1 − 𝛼 . The validity of Algorithm 1 relies on a gen-

eralization of Theorem 3.6 and Table 1 to the probabilistic setting

as asserted below.

Corollary 3.7. Suppose Algorithm 1 predicts 𝑦 with certified
radius 𝑟 . Then an edit distance robustness certificate of radius 𝑟 holds
at x̄ with probability 1 − 𝛼 .

We now make a few comments about the design and usage of

Algorithm 1. We emphasize that independent samples are used for

estimating RS-Del’s prediction (lines 1–2) and bounding RS-Del’s
confidence in that prediction (line 3). This avoids the need to per-

form a correction for multiple hypothesis tests. In our experiments,

we use a smaller number of samples for prediction 𝑛
pred

= 1000

since we observe low variance, and a higher number of samples

for bounding the confidence 𝑛
bound

= 4000, since doing so may po-

tentially improve the radius. If the lower bound on the probability

score for the predicted class 𝜇 �̂� is less than the class-specific thresh-

old 𝜂�̂� , we require that RS-Del abstains from making a prediction

since it would not be robust (line 6).

3.3.2 Training RS-Del. Though RS-Del is theoretically compatible

with any base detector, it will generally perform poorly for con-

ventionally trained base detectors. This is because the distribution

of randomized inputs is likely to be very different from the dis-

tribution of non-randomized inputs encountered during training.

To mitigate this issue, we follow standard practice in randomized

smoothing and train the base detector on randomized inputs [43].

In other words, when iterating over batches of files during training,

we apply the deletion randomization scheme to the files before

passing them to the base detector, ensuring that the randomization

varies each time a file is encountered. We ensure the 𝑝del parameter

for the deletion randomization scheme is set to the same value

during training and testing. Note that our certifications are sound

irrespective of how the base model is trained—the present training

process aims to improve utility.

Algorithm 1: Probabilistic certification for RS-Del

input : input file x̄, base detector 𝑓
b
, deletion

randomization scheme 𝜙 with probability 𝑝del,

decision threshold 𝜂1, significance level 𝛼 ,

number of samples used for prediction 𝑛
pred

and

lower bound 𝑛
bound

, edit ops 𝑂

output :prediction and certified radius

1 Compute 𝜇𝑦 using Eq. (14) and 𝑛
pred

randomized inputs

2 Estimate prediction 𝑦 ← arg max𝑦∈{0,1} 𝜇𝑦 − 𝜂𝑦
3 Compute 𝜇 �̂� using Eq. (15) and 𝑛

bound
randomized inputs

4 Compute certified radius 𝑟 using Table 1

5 if 𝜇 �̂� ≥ 𝜂�̂� then return prediction 𝑦, radius 𝑟
6 else return ABSTAIN

3.3.3 Exploiting semantics from disassembly. Though the most ele-

mentary representation of an executable is as a sequence of bytes, it

ignores the semantics of the program. If decompiling an executable

is feasible, we can associate bytes with their corresponding ma-

chine instructions, data, or other structures. By exploiting such

information, we can group bytes corresponding to an instruction,

and regard them as a single token in the input sequence. This

grouping of bytes extends to our definition of the edit distance

threat model (we consider edits at the token level) and to our dele-

tion randomization scheme (we delete at the token-level). There

are a few advantages to this approach: Deletion at the token-level

fully preserves the instruction semantics and improves the base

detector’s performance. We also obtained a tighter threat model

by eliminating inputs containing invalid instructions. As a result,

an instruction-level certificate covers a larger set of possible adver-

sarial examples than a byte-level certificate of the same radius. An

illustration of this concept can be found in Figure 1.

4 EVALUATION
We now empirically evaluate our proposed method RS-Del on two

malware datasets to address the remaining research questions. To

answer Q2 on tradeoffs between malware detection accuracy and

robustness guarantees, we vary the aggressiveness of smoothing,

and provide comparisons with a non-smoothed baseline and an

alternative randomized smoothingmethod [46] that applies to a con-

strained version of our threat model. Towards Q3 on the practical

robustness of RS-Del, Section 4.3 reports success rates of five pub-

lished evasion attacks against RS-Del and a non-smoothed baseline.

Computational efficiency and training convergence are reported in

Appendix D.

4.1 Experimental setup
We next detail the experimental setup, including data sources, ma-

chine learning models for malware detection, and parameters for

randomized smoothing and certification.

4.1.1 Datasets. Though our methods are compatible with exe-

cutable files of any format, in our experiments we focus on the

Portable Executable (PE) format [53], since datasets, malware detec-

tion models and adversarial attacks are more extensively available.

Moreover, PE format is the standard for executables, object files and
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Original input file
File offset Byte rep. Disassembly rep.

00000000 77 NI

00000001 90 NI

00000002 144 NI
...

...
...

00000400 85 push ebp

00000401 139
mov ebp, esp

00000402 236

00000403 131
00000404 236
00000405 92

sub esp, 5Ch

...
...

...

Byte-level deletion
File offset Byte rep.

00000000 77
00000002 144
...

...
00000400 85
00000403 131
00000404 236
...

...

Instruction-level deletion
File offset Disassembly rep.

00000001 NI
...

...

00000400 push ebp

00000401
mov ebp, esp

00000402
...

...

Figure 1: Illustration of byte-level and instruction-level threat models. RS-Del (Section 3.3.1) is approximated by aggregating
predictions of the base detector on byte-level (middle) or instruction-level (right) randomized inputs. Left: An executable
file prior to input randomization. The byte array representation is shown in the 2nd column and partial output from the
disassembler (Ghidra [56]) is shown in the 3rd column. Bytes that do not correspond to machine instructions are marked
NI. Shading represents bytes (light gray) or instructions (dark gray) that are deleted in the randomized inputs to the right.
Middle: A sample randomized input under the byte-level threat model, where semantic information from the disassembler
is ignored. This may result in individual instructions being partially deleted. Right: A sample randomized input under the
instruction-level threat model, where bytes corresponding to an instruction (or non-instruction NI) are treated as a single unit.

shared libraries in Microsoft Windows and is an attractive target for

malware authors. We use two PE datasets which are summarized

in Table 2 and described below.

Sleipnir2. This dataset attempts to replicate data used in past

work [2], which was not published with raw samples. We recon-

structed the raw malicious samples by retrieving them from

VirusShare [84] using the provided hashes. Since we were unable

to reconstruct the raw benign samples, we followed established

protocols [41, 42, 72] to collect new benign samples. Specifically,

we set up a Windows 7 virtual machine with over 300 packages in-

stalled using Chocolatey package manager [75]. We then extracted

PE files from the virtual machine, which were assumed benign
2
,

and subsampled them to match the number of malicious samples.

The dataset is randomly split into training, validation and test sets

with a ratio of 60%, 20% and 20% respectively.

VTFeed. This dataset was first used in recent attacks on end-

to-end ML-based malware detectors [52]. It was collected from

VirusTotal—a commercial threat intelligence service—by sampling

PE files from the live feed over a period of two weeks in 2020. La-

bels for the files were derived from the 68 antivirus (AV) products

aggregated on VirusTotal at the time of collection. Files were la-

beled malicious if they were flagged malicious by 40 or more of

the AV products, they were labeled benign if they were not flagged

malicious by any of the AV products, and any remaining files were

excluded. Following Lucas et al. [52], the dataset is randomly split

into training, validation and test sets with a ratio of 80%, 10%, and

10% respectively.

We note that VTFeed came with strict terms of use, which pre-

vented us from loading it on our high performance computing

2
Chocolatey packages are validated against VirusTotal [14].

Table 2: Summary of datasets.

Number of samples

Dataset Label Train Validation Test

Sleipnir2
Benign 20 948 7 012 6 999

Malicious 20 768 6 892 6 905

VTFeed
Benign 111 258 13 961 13 926

Malicious 111 395 13 870 13 906

(HPC) cluster. As a result, we use Sleipnir2 for comprehensive ex-

periments (e.g., varying 𝑝del) on the HPC cluster, and VTFeed for a

smaller selection of experiments run on a local server.

4.1.2 Malware detectors. We experiment with static malware de-

tectors based on a neural network model called MalConv [64]. Mal-

Conv was one of the first end-to-end models proposed for malware

detection—i.e., it learns to classify directly from raw byte sequences,

rather than relying on manually engineered features. Architec-

turally, it composes a learnable embedding layer with a shallow

convolutional network. A large window size and stride of 500 bytes

are employed to facilitate scaling to long byte sequences. Though

MalConv is compatible with arbitrarily long byte sequences in prin-

ciple, we truncate all inputs to 2MB to support training efficiency.

We use the original parameter settings and training procedure [64],

except where specified in Appendix E.

Using MalConv as a basis, we consider three malware detectors

as described below.

NS. This detector corresponds to a non-smoothed (NS) MalConv

model. It serves as a non-certified, non-robust baseline—i.e., no

specific techniques are employed to improve robustness to evasion

attacks and certification is not supported.
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RS-Abn. This detector implements randomized smoothing using

MalConv as a base detector, with an ablation randomization scheme

proposed by Levine and Feizi [46]. It serves as a certified robust

baseline, albeit for a more restricted threat model than the one we

propose in Section 2.2. Specifically, it supports robustness certifica-

tion for the Hamming distance threat model, where an attacker’s

capability is measured by the number of substituted bytes. Since

Levine and Feizi’s formulationwas for images, several modifications

are required to support malware detection. We adapt the encoding

of ablated (masked) values by introducing a special mask token; we

add support for variable-length inputs by ablating a fraction 𝑝ab
of the input values rather than a constant number; and we apply

gradient clipping when learning parameters in the embedding layer

to improve convergence (see Appendix D). We consider variants of

this detector for different values of the ablation probability 𝑝ab.

RS-Del. This is our proposed detector: it implements randomized

smoothing using MalConv as a base detector, with our proposed

deletion randomization scheme. It supports robustness certification

for the generalized edit distance threat model. We consider variants

of this detector for different values of the deletion probability 𝑝del
and the detection threshold 𝜂1.

4.1.3 Controlling false positive rates. Malware detectors are typi-

cally tuned to have a low false positive rate (FPR) (e.g., less than

0.1–1%) since producing too many false alarms is a nuisance to

users.
3
To make all detectors comparable, we report results by cali-

brating the FPR to be 0.5% on the test set for Section 4.2 and 0.5% on

the validation set for Section 4.3 unless otherwise noted. This tun-

ing is done by adjusting the decision threshold on the probability at

which the base detector (MalConv) predicts a file to be malicious.

4.2 Accuracy and Certification of RS-Del
In this section, we address research question Q2 by evaluating the

robustness guarantees and malware detection accuracy of RS-Del.
We consider two instantiations of the edit distance threat model.

First, in Section 4.2.1, we consider the Levenshtein distance threat

model, where the attacker’s elementary edits are unconstrained and

may include deletions, insertions and substitutions. Then, in Sec-

tion 4.2.2, we consider the more restricted Hamming distance threat

model, where an attacker is only able to perform substitutions. We

summarize our findings in Section 4.2.3. Overall, we find RS-Del
generates robust predictions with minimal impact on model accu-

racy for the Levenshtein distance threat model, and outperforms

RS-Abn [46] for the Hamming distance threat model.

We report the following quantities in our evaluation:

• Certified radius (CR). The radius of the largest edit distance
robustness certificate (see Definition 2.2) that can be issued

for a given input file, malware detector and certification

method. Note that this is a conservative measure of robust-

ness since it is tied to the certification method. The median
CR is computed on the test set.

• Certified accuracy [17, 43], also known as verified-robust
accuracy [45, 90], evaluates robustness certificates and accu-
racy simultaneously with respect to a test set. It is defined

3
https://www.av-comparatives.org/testmethod/false-alarm-tests/

as the fraction of files in the test set D for which the mal-

ware detector 𝑓 ’s prediction is correct and certified robust

at radius 𝑟 :

CertAcc𝑟 (D) =
∑︁
(x,𝑦) ∈D

1𝑓 (x)=𝑦1CR(x)≥𝑟
|D| (16)

where CR(x) denotes the certified radius for input x re-

turned by the certification method.

• Clean accuracy. The fraction of files in the test set for which

the malware detector’s prediction is correct.

We briefly mention default parameter settings for experiments in

this section. When approximating the smoothed malware detectors

(RS-Del and RS-Abn) we sample𝑛
pred

= 1000 randomized inputs for

prediction and 𝑛
bound

= 4000 randomized inputs for certification,

while setting the significance level 𝛼 to 0.05. Unless otherwise

specified, we set the decision thresholds for the smoothed detectors

so that 𝜂0 = 𝜂1 = 0.5. The decision thresholds for the base detectors

are tuned to yield a false positive rate of 0.5%.We note that the entire

test set is used when reporting metrics and summary statistics in

this section.

4.2.1 Levenshtein distance threat model. We first present results

for the Levenshtein distance threat model, where the attacker’s

elementary edits are unconstrained (𝑂 = {del, ins, sub}). We vary

three parameters associated with RS-Del: the deletion probabil-

ity 𝑝del, the decision threshold of the smoothed detector 𝜂1, and

the elementary token (bytes versus instructions). We use NS as

a baseline as there are no prior certified defenses for this threat

model to our knowledge.

Certified accuracy. Figure 2 plots the certified accuracy of RS-Del
as a function of the radius 𝑟 on the Sleipnir2 dataset for several

values of 𝑝del using byte-level Levenshtein distance. The corre-

sponding plot for instruction-level Levenshtein distance exhibits

similar behavior, and is presented in Figure 4 of Appendix C. We

observe that the curves for larger values of 𝑝del approximately dom-

inate the curves for smaller values of 𝑝del, for 𝑝del ≤ 99.5% (i.e.,

the accuracy is higher or close for all radii). This suggests that the

robustness of RS-Del can be improved without sacrificing accu-

racy by increasing 𝑝del up to 99.5%. However, for the larger value

𝑝del = 99.9%, we observe a drop in certified accuracy of around 10%

for smaller radii and an increase for larger radii.

It is interesting to relate these certification results to published

evasion attacks. Figure 2 shows that we can achieve a certified

accuracy in excess of 90% at a Levenshtein distance radius of 128

bytes when 𝑝del = 99.5%. This radius is larger than the median

Levenshtein distance of two attacks that manipulate headers of PE

files [20, 57] (see Table 4). We can therefore provide reasonable

robustness guarantees against these two attacks. However, a radius

of 128 bytes is orders of magnitude smaller than the median Leven-

shtein distances of other published attacks which range from tens

of KB [42, 52] to several MB [21] (see Table 4). While some of these

attacks arguably fall outside an edit distance constrained threat

model, we consider them in our empirical evaluation of robustness

in Section 4.3.

Clean accuracy and abstention rates. We report clean accuracy

and abstention rates in Table 7 of Appendix C, and summarize
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Figure 2: Certified accuracy for RS-Del as a function of the
certificate radius (horizontal axis) and byte deletion proba-
bility 𝑝del (colored line styles). The results are plotted for the
Sleipnir2 test set under the byte-level Levenshtein distance
threat model (with 𝑂 = {del, ins, sub}). The grey vertical lines
represent the best achievable certified radius for RS-Del (set-
ting 𝜇𝑦 = 1 in the expressions in Table 1). It is apparent that
𝑝del controls a robustness/accuracy tradeoff. Note that in this
setting, a non-smoothed, non-certified detector (NS) achieves
a clean accuracy of 98%.

trends here. For the Sleipnir2 dataset, we find that clean accuracy is

relatively constant for 𝑝del in the range 90-99.5%, but drops by more

than 10% at 𝑝del = 99.9%. This is in line with the trends observed

for certified accuracy. We note that the clean accuracy of RS-Del
(excluding 𝑝del = 99.9%) is at most 3% lower than the NS baseline

for Sleipnir2 and at most 7% lower than the NS baseline for VTFeed.

Accuracy under high deletion. It may be surprising that RS-Del
can maintain high accuracy even when deletion is aggressive. We

offer some possible explanations. First, we note that even with a

high deletion probability of 𝑝del = 99.9%, the smoothed detector

accesses almost all of the file in expectation, as it aggregates 𝑛
pred

=

1000 predictions from the base detector each of which accesses

a random 0.1% of the file in expectation. Second, we posit that

malware detection may be “easy” for RS-Del on these datasets. This

could be due to the presence of signals that are robust to deletion

(e.g., file size or byte frequencies) or redundancy of signals (i.e., if a

signal is deleted in one place it may be seen elsewhere).

Decision threshold. Table 3 provides error rates and robustness

metrics for several values of the decision threshold 𝜂1, using byte-

level Levenshtein distance with 𝑝del = 99.5% (see Appendix C for

plots of the certified true positive and true negative rates). When

varying 𝜂1, we also vary the decision threshold of the base detector

to achieve a target false positive rate (FPR) of 0.5%. Looking at

the table, we see that 𝜂1 has minimal impact on the false negative

rate (FNR), which is stable around 7%. However, there is a signifi-

cant impact on the median CR (and theoretical upper bound), as

reported separately for each class. The median CR is balanced for

both the malicious and benign class when 𝜂1 = 50%, but favours

Table 3: Impact of the smoothed decision threshold𝜂1 on false
negative error rate (FNR) and median certified radius (CR)
for malicious and benign files. The false positive rate (FPR) is
set to a target value of 0.5% by varying the decision threshold
of the base classifier. The results are reported for Sleipnir2
with 𝑝del = 99.5% using byte-level Levenshtein distance. “UB”
refers to an upper bound on the median CR for a best case
smoothed detector (based on Table 1 with 𝜇𝑦 = 1).

Median CR (UB)

𝜂1 (%) FNR (%) FPR (%) Malicious Benign

50 6.8 0.5 137 (138) 137 (138)
25 6.9 0.5 275 (276) 57 (57)
10 6.8 0.5 455 (459) 20 (21)
5 6.6 0.5 578 (597) 10 (10)
1 7.1 0.5 582 (918) 1 (2)
0.5 6.9 0.5 506 (1057) 0 (0)

the malicious class as 𝜂1 is decreased. For instance when 𝜂1 = 5% a

significantly larger median CR is possible for malicious files (137

to 578) at the expense of the median CR for benign files (137 to

10). This asymmetry in the class-specific CR is a feature of the

theory—that is, in addition to controlling a tradeoff between error

rates of each class, 𝜂1 also controls a tradeoff between the CR for

each class (see Table 1).

4.2.2 Hamming distance threat model. We now turn to the more

restricted Hamming distance threat model, where the attacker is

limited to performing substitutions only (𝑂 = {sub}). We choose

to evaluate this threat model as it is covered in previous work on

randomized smoothing, called randomized ablation [46] (abbrevi-

ated RS-Abn), and can serve as a baseline for comparison with our

method. Recall that we adapt RS-Abn to malware detection by in-

troducing a parameter called 𝑝ab, which is the fraction of bytes that

are “ablated” (replaced by a special masked value) (see Section 4.1.2).

This parameter is analogous to 𝑝del in RS-Del, except that the num-

ber of ablated bytes is deterministic in RS-Abn, whereas the number

of deleted bytes is random in RS-Del. We compare RS-Del and RS-
Abn for varying values of 𝑝del and 𝑝ab using the Sleipnir2 dataset
and byte-level Hamming distance.

Certified accuracy. Figure 3 plots the certified accuracy of RS-
Del and RS-Abn for three values of 𝑝del and 𝑝ab. We observe that

the certified accuracy is uniformly larger for our proposed method

RS-Del than for RS-Abn when 𝑝del = 𝑝ab. The superior certifica-

tion performance of RS-Del is somewhat surprising given it is not

optimized for the Hamming distance threat model. One possible

explanation relates to the learning difficulty of RS-Abn compared

with RS-Del. Specifically, we find that stochastic gradient descent

is slower to converge for RS-Abn despite our attempts to improve

convergence (see Appendix D).

Recall, that RS-Del provides certificates for any of the threat

models in Table 1—in addition to the Hamming distance certificate—

without needing to modify the randomization scheme.

Tightness. RS-Abn is provably tight, in the sense that it is not

possible to issue a larger Hamming distance certificate unless more
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Figure 3: Certified accuracy comparison for RS-Del (our
method) and RS-Abn [46] under the Hamming distance
threat model for the Sleipnir2 dataset. Note that our method
is not optimized for the Hamming distance threat model.

information is made available to the certification mechanism or the

ablation randomization scheme is changed. This tightness result

for RS-Abn, together with the empirical results in Figure 3, indicate

that RS-Del produces certificates which are tight or close to tight

in practice, at least for the Hamming distance threat model. This is

an interesting observation, since it is unclear how to derive a tight,

computationally tractable certificate for RS-Del.

4.2.3 Summary. Our evaluation shows that RS-Del provides non-
trivial robustness guarantees with a low impact on accuracy. The

certified radii we observe are close to the best radii theoretically

achievable using our mechanism. For the Levenshtein byte-level

edit distance threat model, we obtain radii of a few hundred bytes in

size, which can certifiably defend against attacks that edit headers

of PE files [20, 22, 57]. However, certifying robustness against more

powerful attacks that modify thousands or millions of bytes remains

an open challenge. By varying the detection threshold, we show

that certification can be performed asymmetrically for benign and

malicious files. This can boost the certified radii of malicious files

by a factor of 4 in some cases. While there are no prior methods

to use as baselines for the Levenshtein distance threat model, our

comparisons with RS-Abn [46] for the Hamming distance threat

model show that RS-Del outperforms RS-Abn in terms of both

accuracy and robustness.

4.3 Empirical robustness to attacks
In this section, we address research question Q3 by empirically

evaluating the robustness of RS-Del to several published evasion

attacks. By doing so, we aim to provide a more complete picture of

robustness, as our certificates are conservative and may underes-
timate robustness to real attacks, which are subject to additional

constraints (e.g., maintaining executability, preserving a malicious

payload, etc.). We introduce the attacks in Section 4.3.1, provide

details of the experimental setup in Section 4.3.2 and discuss the

results in Section 4.3.3.

4.3.1 Attacks. We consider five recently published attacks designed

for evading static PE malware detectors as summarized in Table 4.

The attacks cover a variety of edit distance magnitudes from tens

of bytes to millions of bytes. While attacks that edit millions of

bytes arguably fall outside of our edit distance-constrained threat

model, we include one such attack (GAMMA) to test the limits of

our methodology. We note that four of the five attacks are able to

operate in a black-box setting and can therefore be applied directly

to RS-Del. However most of the white-box attacks, including Slack,
are designed to attack neural network-base detectors with an initial

embedding layer. It is not obvious how to apply these attacks to

RS-Del, as the deletion sampling deviates from the assumed archi-

tecture, and makes computing gradients difficult. As an alternative,

we therefore transfer the white-box Slack attack from NS to RS-Del.

4.3.2 Experimental setup. Since some of the attacks take hours to

run per file, we use smaller evaluation sets containing malware

subsampled from the test sets in Table 2. The evaluation set for

Sleipnir2 consists of 500 files, and the one for VTFeed consists

of 100 files (matching [52]). We note that our evaluation sets are

comparable in size to prior work [40, 42, 77]. For each evaluation set,

we report attack success rates against malware detectors trained

on the same dataset.

Since all attacks employ greedy optimizationwith randomization,

they may fail on some runs, but succeed on others. We therefore

repeat each attack 5 times per file and use the best performing

attacked file in our evaluation. We define the attack success rate as

the proportion of files initially detected as malicious for which at

least one of the 5 attack repeats is successful at evading detection.

Lower attack success rates correlate with improved robustness

against attacks. We permit all attacks to run for up to 200 attack

iterations of the internal optimizer. Early stopping is enabled for

those attacks that support it (Disp, Slack, GAMMA), which means

the attack terminates as soon as the malware detector’s prediction

flips from malicious to benign.

Where possible, we run direct attacks against RS-Del and com-

pare success rates againstNS as a baseline.We also consider transfer
attacks from NS to RS-Del as an important variation to the threat

model, where an attacker has limited access to the target RS-Del
during attack optimization. When running direct attacks against

RS-Del, we use a reduced number of samples (𝑛
pred

= 100) to make

the computational cost of the attacks more manageable. For both

direct and transfer attacks against RS-Del, we set 𝑝del = 97% and

use bytes as the elementary tokens for smoothing.

4.3.3 Results. Table 5 presents results for transfer attacks from

NS to RS-Del. The results for direct attacks against RS-Del are
presented in Table 6. Almost all of the attacks transfer poorly to

RS-Del. In most cases the attack success rates drop to zero or single

digit percentages. This may be evidence of increased robustness,

towards Q3. Among the attacks, GAMMA is an exception: included

to test the limits of RS-Del, GAMMA produces attacks with edit

distances several orders of magnitude greater than the certifications.
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Table 4: Evasion attacks used in our evaluation. The attack distance refers to the median Levenshtein distance computed
on a set of 500 attacked files from the Sleipnir2 test set. We use a closed source implementation of Disp and open source
implementations of the remaining attacks based on secml-malware [19].

Attack

Supported

settings

Attack

distance

Optimizer Description

Disp [52]

White-box,

black-box

17.2 KB Gradient-guided

Disassembles the PE file and displaces chunks of code to a new section,

replacing the original code with semantic nops.

Slack [42] White-box 34.7 KB

Fast Gradient Sign

Method [30]

Replaces non-functional bytes in slack regions or the overlay of the PE

file with adversarially-crafted noise.

HDOS [20]

White-box,

black-box

17.0 B Genetic algorithm

Manipulates bytes in the DOS header of the PE file which are not used

in modern Windows.

HField [57]

White-box,

black-box

58.0 B Genetic algorithm

Manipulates fields in the header of the PE file (debug information,

section names, checksum, etc.) which do not impact functionality.

GAMMA [21] Black-box 2.10 MB Genetic algorithm

Appends sections extracted from benign files to the end of a malicious

PE file and modifies the header accordingly.

Table 5: Success rates of attacks transferred from NS to RS-
Del in white- and black-box settings.

Success rate (%)

Setting Attack Dataset NS RS-Del

White-box

Disp [52]

Sleipnir2 73.8 0.414

VTFeed 94.1 0.0

Slack [42]

Sleipnir2 57.9 2.90

VTFeed 96.0 1.01

Black-box

HDOS [20]

Sleipnir2 0.0 0.0

VTFeed 0.0 0.0

HField [57]

Sleipnir2 0.607 0.0

VTFeed 0.990 0.0

Disp [52]

Sleipnir2 0.607 0.0

VTFeed 10.9 0.0

GAMMA [21]

Sleipnir2 99.2 99.6

VTFeed 76.2 100.0

We hypothesize that GAMMA adds so much benign content that

it overwhelms the malicious signal—enough to cross the decision

boundary—akin to a good word attack [51]. We find thatHDOS and
HField are ineffective for both RS-Del and the baseline NS. Both
attacks change up to 58 bytes in the header, and tend to fall within

our certifications.

5 RELATEDWORK
Since Goodfellow et al. [30] reported the vulnerability of neural

networks to adversarial examples, numerous mitigations have been

proposed, with most aiming for best response against a particular

attack [85]. By contrast, certified robustness aims to guarantee a

model’s output does not change under adversarial perturbations.

The literature predominantly considers norm-bounded perturba-
tions in computer vision under ℓ𝑝 norms. Deterministic approaches
to certification [24, 31, 45, 55, 66, 81, 88, 88, 89, 94] achieve this

Table 6: Success rates of direct black-box attacks against RS-
Del and the NS baseline.

Success rate (%)

Attack Dataset NS RS-Del

HDOS [20]

Sleipnir2 0.0 0.0

VTFeed 0.0 0.0

HField [57]

Sleipnir2 0.607 0.0

VTFeed 0.990 0.0

Disp [52]

Sleipnir2 0.809 0.0

VTFeed 10.9 0.0

GAMMA [21]

Sleipnir2 99.2 54.1

VTFeed 76.2 100.0

objective by computing outer bounds on a model’s possible out-

puts under perturbation. Such approaches apply to specific net-

work architectures, by employing convex relaxation or exploiting

piecewise-linear structures, limiting their adaptation to generic base

models and new domains. As an alternative, randomized smoothing
[17, 43, 44, 46] provides high-probability guarantees with flexible

certification mechanisms. Randomized smoothing is agnostic to

the inner workings of the model, and only uses API access to in-

ference: randomness is introduced to model inputs, followed by

aggregation of corresponding predictions. In this paper we adapt

randomized smoothing to malware detection. Section 3 develops a

novel smoothing mechanism based on random deletions, and offers

practical recommendations on tractable Monte Carlo approxima-

tion, effective model training, and improved performance through

operating at the level of instructions.

Despite the rich body of research and useful abstraction, gen-

eral ℓ𝑝 -norm-bounded threat models are inadequate for many prob-

lems including perturbations to executable files considered in this

work. Even in computer vision, ℓ𝑝 -norm bounded defenses can

be circumvented by image translation, rotation, blur, and other

human-imperceptible transformations that induce extremely large
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ℓ𝑝 distances. One technique to address this issue is to re-parametrize

the norm-bounded distance in terms of image transformation pa-

rameters [28, 32, 48]. In other words, instead of certifying instances

to be robust against ℓ𝑝 perturbations, one may consider ℓ𝑝 distance

in terms of transformation parameters. Natural language, on the

other hand, faces a different issue: while the general ℓ𝑝 threat model

covers adversarial word substitution [67], it is too broad and covers

many actual (non-adversarial) examples as well. For example, “He

loves cat” and “He hates cat” are both 1 word Hamming distance

away from “He likes cat”, but are semantically different. A certificate

of radius 1 will force a wrong prediction for at least one neighbor.

To address this, Jia et al. [37] and Ye et al. [92] constrain the threat

model to synonyms only.

Similar to natural language, adversarial examples encountered

in malware are constrained by the semantics of the platform and

instruction specifications. However, in this paper we go beyond the

word substitution threat model of previous work [67], as considera-

tion of insertions and deletions is necessary in malware detection.

Such edits are not captured by the ℓ𝑝 threat model: there is no

fixed file size, and even when edits are size-preserving, a few edits

may lead to large ℓ𝑝 distances. Arguably, our edit distance threat

model and RS-Delmechanism are of independent interest to natural

language also.

Several empirical defense methods have been proposed to im-

prove robustness of ML classifiers [23, 63]. Íncer Romeo et al. [36]

compose manually crafted Boolean features with a classifier that

is constrained to be monotonically increasing with respect to se-

lected inputs. This approach permits a combination of (potentially

vulnerable) learned behavior with domain knowledge, and thereby

aims to mitigate adversarial examples. Demontis et al. [23] show

that the sensitivity of linear support vector machines to adversarial

perturbations can be reduced by training with ℓ∞ regularization

of weights. In another work, Quiring et al. [63] take advantage of

heuristic-based semantic gap detectors and an ensemble of feature

classifiers to improve empirical robustness. Compared to our work

on certified adversarial defenses, these approaches do not provide

formal guarantees.

Binary normalization [9, 15, 61, 87] was originally proposed to

defend against polymorphic/metamorphic malware, and can also

be seen as a mitigation to certain adversarial examples. It attempts

to sanitize binary obfuscation techniques by mapping malware to

a canonical form before running a detection algorithm. However,

binary normalization cannot fully mitigate attacks like Disp (see

Table 4), as deducing opaque and evasive predicates are NP-hard

problems [52].

Dynamic analysis can provide additional insights for malware

detection. In particular, it can record a program’s behavior while

executing it in a sandbox (e.g., collecting a call graph or network

traffic) [38, 62, 68, 93, 95]. Though detectors built on top of dynamic

analysis can be more difficult to evade, as the attacker needs to

obfuscate the program’s behavior, they are still susceptible to adver-

sarial perturbations. For example, an attacker may insert API calls

to obfuscate a malware’s behavior [27, 34, 69, 70]. Applying RS-Del
to certify detectors that operate on call sequences [95] or more

general dynamic features would be an interesting future direction.

6 CONCLUSION
In this paper we study certified robustness of machine learned

malware detectors. There has been relatively little research on

certification outside the computer vision domain, where threats are

modeled as ℓ𝑝 -norm bounded perturbations. By contrast, malware

detection is a highly adversarial setting where evasion is the rule

not the exception and where the action space does not preserve

length—ruling out the ℓ𝑝 -norm altogether. We organize our study

across three research questions Q1–Q3.
We address Q1 on the feasibility of certified robustness for mal-

ware detection, by identifying an appropriate edit distance threat

model and designing a randomized smoothing-based certification

mechanism. Our threat model covers adversaries that can make

substitution, deletion or insertion perturbations, and is likely of

independent interest beyond the malware domain. Our novel ran-

domized smoothingmechanism called RS-Del, can produce certified
guarantees within this threat model (and several variations) using

only API access to the malware detector.

We respond to Q2 on the size of certified guarantees and costs to

accuracy by carefully evaluating RS-Del on two malware datasets

using a recent static deep malware detector [64]. Besides providing

certified radii that are close to the best achievable using our theoret-

ical analysis, we find that RS-Del can certify a radius as large as 128

bytes (in Levenshtein distance) without significant loss in detection

accuracy. A certificate of this size covers in excess of 10
606

files in

the proximity of a 10KB input file.

In recognition that certifications are necessarily conservative, for

Q3 we examine RS-Del in the presence of five recently published

attacks. We find that while empirical robustness is not absolute,

it does extend beyond the certified radius, when attacks are of a

modest size, i.e., where the edit distance threat model is appropriate.

Our results suggest a number of directions for future work. It

would be interesting to adapt RS-Del to malware detectors with

dynamic analysis, e.g., using recorded call sequences [95]. Where

certifications may naturally define regions in feature space [28,

32, 48], it would be most helpful to relate guarantees to natural

actions of an attacker. Operationalizing certifications has so far

eluded systems in computer vision, but may be more forthcoming

in malware detection where both automation and human analysts

are prevalent. Finally, certifying robustness against attacks that

modify thousands or millions of bytes remains an open challenge.
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A BRUTE-FORCE EDIT DISTANCE
CERTIFICATION

In this appendix, we show that an edit distance certification mech-

anism based on brute-force search is computationally infeasible.

Suppose we are interested in issuing an edit distance certificate

at radius 𝑟 for a malware detector 𝑓 at input file x. Recall from
Definition 2.2 that in order to issue a certificate, we must show

there exists no adversarial file x′ within the edit distance neigh-

borhood N𝑟 (x) that would change 𝑓 ’s prediction. This problem

can theoretically be solved in a brute-force manner, by querying

𝑓 for all inputs in N𝑟 (x). In the best case, this would take time

linear in |N𝑟 (x) |, assuming 𝑓 responds to queries in constant time.

However the following lower bound [13], shows that the size of

the edit distance neighborhood is too large even in the best case:

|N𝑟 (x) | ≥
𝑟∑︁
𝑖=0

255
𝑖

𝑟∑︁
𝑗=𝑖−𝑟

(
|x| + 𝑗

𝑖

)
.

For example, brute-force certification for a small file of size |x| =
10KB and certificate radius 𝑟 = 10 would require N𝑟 (x) ≥ 10

58

queries to 𝑓 . In contrast, our probabilistic certification mechanism

(Algorithm 1) makes 𝑛
pred
+𝑛

bound
queries to 𝑓 , and we can provide

high probability guarantees when the number of queries is of order

10
3
or 10

4
.

B PROOFS FOR SECTION 3.2
In this appendix, we provide proofs of the theoretical results stated

in Section 3.2.

B.1 Proof of Lemma 3.3
Let 𝑟𝑆 : 𝑆 → {1, . . . , |𝑆 |} be a bijection that returns the rank of

an element in an ordered set 𝑆 . Let ¤𝑟𝑆 : 2
𝑆 → 2

{1,..., |𝑆 | }
be an

elementwise extension of 𝑟𝑆 that returns a set of ranks for an ordered
set of elements—i.e., ¤𝑟𝑆 (𝑈 ) = { 𝑟𝑆 (𝑖) : 𝑖 ∈ 𝑈 } for 𝑈 ⊆ 𝑆 . We

claim𝑚(𝜖) = ¤𝑟−1

𝜖★
( ¤𝑟𝜖★ (𝜖)) is a bijection that satisfies the required

property.

To prove the claim, we note that 𝑚 is a bijection from 2
𝜖★

to

2
𝜖★

since it is a composition of bijections ¤𝑟𝜖★ : 2
𝜖★ → 2

{1,...,𝑙 }

and ¤𝑟−1

𝜖★
: 2
{1,...,𝑙 } → 2

𝜖★
where 𝑙 = |𝜖★ | = |𝜖★ |. Next, we observe

that ¤𝑟𝜖★ (𝜖) relabels indices in 𝜖 so they have the same effect when

applied to z★ as 𝜖 on x (this also holds for ¤𝑟𝜖★ and 𝜖). Thus

apply(x, 𝜖) = apply(z★, ¤𝑟𝜖★ (𝜖))
= apply(z★, ¤𝑟𝜖★ ( ¤𝑟−1

𝜖 ( ¤𝑟𝜖★ (𝜖))))
= apply(x̄,𝑚(𝜖))

as required. To prove the final statement, we use (4), (5) and (9) to

write

𝑠 (𝜖, x; 𝑓
b
)

𝑠 (𝜖, x̄; 𝑓
b
) =

1𝑓
b
(apply(x,𝜖 ) )=𝑦𝑝

|x |− |𝜖 |
del (1 − 𝑝del) |𝜖 |

1𝑓
b
(apply(x̄,𝜖 ) )=𝑦𝑝

|x̄ |− |𝜖 |
del (1 − 𝑝del) |𝜖 |

=
𝑝
|x |− |z |
del (1 − 𝑝del) |z |1𝑓

b
(z)=𝑦

𝑝
|x̄ |− |z |
del (1 − 𝑝del) |z |1𝑓

b
(z)=𝑦

= 𝑝
|x |− |x̄ |
del ,

where the second last line follows from the fact that apply(x, 𝜖) =
apply(x̄, 𝜖) = z.

B.2 Proof of Theorem 3.4
Let 𝜖★ and 𝜖★ be defined as in Lemma 3.3. We derive an upper

bound on the sum over 𝜖 ∈ 2
𝜖★

that appears in (10). Observe that∑︁
𝜖∉2

𝜖★

𝑠 (𝜖, x̄; 𝑓
b
) ≤

∑︁
𝜖∉2

𝜖★

Pr [𝐺 (x̄) = 𝜖]

= 1 −
∑︁

𝜖∈2
𝜖★

Pr [𝐺 (x̄) = 𝜖]

= 1 − 𝑝 |x̄ |− |𝜖
★ |

del

|𝜖★ |∑︁
|𝜖 |=0

(
|𝜖★ |
|𝜖 |

)
𝑝
|𝜖★ |− |𝜖 |
del (1 − 𝑝del) |𝜖 |

= 1 − 𝑝 |x̄ |− |𝜖
★ |

del , (17)

where the first line follows from the inequality 1𝑓
b
(apply(x̄,𝜖 )=𝑦) ≤ 1;

the second line follows from the law of total probability; the third

line follows by constraining the indices {1, . . . , |x̄|}\𝜖★ to be deleted;

and the last line follows from the normalization of the binomial
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distribution. Putting (17) and

∑
𝜖∈2

𝜖★ 𝑠 (𝜖, x; 𝑓
b
) ≥ 0 in (10) then

gives the required result.

B.3 Proof of Corollary 3.5
Since the length of x̄ can only be changed by inserting or deleting

bytes in x, we have |x̄| − |x| = 𝑛ins − 𝑛del. We also observe that x
can be transformed into x̄ using the longest common subsequence

z★ as an intermediary. Specifically, 𝑛del + 𝑛sub bytes can be deleted

from x to yield z★, then 𝑛ins + 𝑛sub bytes can be inserted in z★ to

yield x̄. This implies |x̄| − |z★ | = 𝑛ins + 𝑛sub. Substituting the above
identities in (11) gives the required result.

B.4 Proof of Theorem 3.6
Eliminating𝑛sub from (13) using the constraint𝑛sub = 𝑟−𝑛del−𝑛ins,
we obtain a minimization problem in two variables:

min

𝑛ins,𝑛del∈N0

𝜓 (𝑛ins, 𝑛del)

s.t. 0 ≤ 𝑛ins + 𝑛del ≤ 𝑟

where 𝜓 (𝑛ins, 𝑛del) = 𝑝
𝑛del−𝑛ins
del

(
𝜇𝑦 − 1 + 𝑝𝑟−𝑛del

del

)
. Observe that 𝜓

is monotonically increasing in 𝑛ins and 𝑛del:

𝜓 (𝑛ins + 1, 𝑛del)
𝜓 (𝑛ins, 𝑛del)

=
1

𝑝del
≥ 1

𝜓 (𝑛ins, 𝑛del + 1)
𝜓 (𝑛ins, 𝑛del)

=
(𝜇𝑦 − 1)𝑝𝑛del+1

del + 𝑝𝑟del
(𝜇𝑦 − 1)𝑝𝑛del

del + 𝑝
𝑟
del

≥ 1,

where the second inequality follows since we only consider 𝑟 and

𝜇𝑦 such that the numerator and denominator are positive. Thus

the minimizer is (𝑛★ins, 𝑛
★
del, 𝑛

★
sub) = (0, 0, 𝑟 ) and we find 𝜌 (x̄; 𝜇𝑦) =

𝜇𝑦 − 1 + 𝑝𝑟del. The expression for the largest certified radius follows

by solving 𝜌 (x̄; 𝜇𝑦) > 𝜂𝑦 for non-negative integer 𝑟 .

B.5 Proof of Corollary 3.7
Recall that Corollary 3.5 gives the following lower bound on the

smoothed detector’s score at x:

lb𝑦 (x; x̄, 𝜇𝑦) = 𝑝
𝑛del−𝑛ins
del

(
𝜇𝑦 − 1 + 𝑝𝑛sub+𝑛ins

del

)
.

Observe that we can replace 𝜇𝑦 by a lower bound 𝜇𝑦 that holds with

probability 1− 𝛼 (as is done in lines 3–4 of Algorithm 1) and obtain

a looser lower bound lb𝑦 (x; x̄, 𝜇𝑦) ≤ lb𝑦 (x; x̄, 𝜇𝑦) that holds with
probability 1 − 𝛼 . Crucially, this looser lower bound has the same

functional form, so all results depending on Corollary 3.5, namely

Theorem 3.6 and Table 1, continue to hold albeit with probability

1 − 𝛼 .

C ADDITIONAL RESULTS FOR
EFFECTIVENESS OF CERTIFICATION

In this appendix, we present supplementary results for Section 4.2,

covering accuracy and robustness guarantees of our method (RS-
Del).

Table 7 reports clean accuracy for RS-Del and the non-certified

NS baseline. It also reports abstention rates for RS-Del, the median

certified radius (CR), and the median certified radius normalized

by file size (NCR). We find that clean accuracy for Sleipnir2 follows

similar trends as certified accuracy: it is relatively stable as the dele-

tion probability increases to 𝑝del = 99.5%, but suffers a significant

drop at 𝑝del = 99.9%. We observe minimal differences in the results

for instruction (Insn) and byte-level (Byte) smoothing, but note

that the effective CR is larger for instruction smoothing, since each

token may contain several bytes.

Table 7: Clean accuracy and robustness metrics for RS-Del
as a function of the dataset (Sleipnir2 and VTFeed), deletion
probability 𝑝del and elementary token (bytes and instruc-
tions). All metrics are computed on the test set. Here “abstn.
rate” refers to the fraction of test instances for which RS-Del
abstains (line 6 in Algorithm 1), and “UB” refers to an upper
bound on the median CR for a best case smoothed detector
(based on Table 1 with 𝜇𝑦 = 1). A good tradeoff is achieved
when 𝑝del = 99.5% for both the byte- and instruction-level
threat models (highlighted in bold face below).

Params Clean accuracy Median Median

Detector token, 𝑝del (Abstn. rate) % CR (UB) NCR %

Sleipnir2

NS 98.9 − − − −

RS-Del

Byte, 90% 97.1 (0.2) 6 (6) 0.0023

Byte, 95% 97.8 (0.0) 13 (13) 0.0052

Byte, 97% 97.4 (0.1) 22 (22) 0.0093

Byte, 99% 98.1 (0.1) 68 (68) 0.0262

Byte, 99.5% 96.5 (0.2) 137 (138) 0.0555
Byte, 99.9% 83.7 (3.4) 688 (692) 0.2269

Insn, 90% 97.9 (0.1) 6 (6) 0.0026

Insn, 95% 97.8 (0.1) 13 (13) 0.0056

Insn, 97% 98.3 (0.0) 22 (22) 0.0095

Insn, 99% 97.6 (0.1) 68 (68) 0.0292

Insn, 99.5% 96.8 (0.2) 137 (138) 0.0589
Insn, 99.9% 86.1 (0.2) 689 (692) 0.2982

VTFeed

NS 98.9 − − − −

RS-Del Byte, 97% 92.1 (0.9) 22 (22) 0.033

Figure 4 plots the certified accuracy of RS-Del on the Sleip-
nir2 dataset using instruction-level Levenshtein distance. It is an

analogue of Figure 2, which plots certified accuracy for byte-level

Levenshtein distance. We observe similar trends in both plots and

refer the reader to the discussion in Section 4.2.1. We note that the

instruction-level variant of RS-Del arguably provides stronger guar-
antees, since the effective radius for instruction-level Levenshtein

distance is larger than for byte-level Levenshtein distance.

Figure 5 plots the certified true positive rate (TPR) and true

negative rate (TNR) of RS-Del on the Sleipnir2 dataset for several
values of the decision threshold 𝜂1. The certified TPR and TNR can

be interpreted as class-specific analogues of the certified accuracy.

Concretely, the certified TPR (TNR) at radius 𝑟 is the fraction of

malicious (benign) instances in the test set for which the malware

detector’s prediction is correct and certified robust at radius 𝑟 . The

certified TPR and TNR jointly measure accuracy and robustness and

complement the metrics reported in Table 3. Looking at Figure 5,
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Figure 4: Certified accuracy of RS-Del as a function of the
certificate radius (horizontal axis) and token deletion prob-
ability 𝑝del (colored line styles). The results are plotted for
the Sleipnir2 test set under the instruction-level Levenshtein
distance threat model (with 𝑂 = {del, ins, sub}). It is apparent
that 𝑝del controls a robustness/accuracy tradeoff. The grey
vertical lines represent the best achievable certified radius
for RS-Del (setting 𝜇𝑦 = 1 in Table 1). Note that in this setting,
a non-smoothed, non-certified detector (NS) achieves a clean
accuracy of 98%.

we see that the certified TNR curves drop more rapidly to zero

than the certified TPR curves as 𝜂1 decreases. This is in line with

comments made in Section 4.2—that decreasing 𝜂1 sacrifices the

certified radii of benign instances to increase the certified radii of

malicious instances. We note that the curves for 𝜂1 = 1

2
correspond

to the same setting as the certified accuracy curve in Figure 2 (with

𝑝del = 99.5%).

Table 8 provides raw certified accuracy data for two of the cases

plotted in Figure 3 (RS-Del at 𝑝del = 99.5% and RS-Abn at 𝑝ab =

99.5%). We find that RS-Del outperforms RS-Abn for all radii up to

138, which is the largest possible certified radius achievable for the

Hamming distance threat model using our method (see Table 1).

This is notable given our method is not specifically designed for

the Hamming distance threat model.

D EFFICIENCY OF RANDOMIZED
SMOOTHING

In this appendix, we discuss the training and computational effi-

ciency of RS-Del and provide comparisons with RS-Abn.

Computational efficiency. Table 9 provides wall clock times for

training and prediction of smoothed detectors. The prediction times

are further decomposed into subtasks: input randomization and pre-

diction for the base detector. All times are recorded on a desktop PC

fitted with an AMD Ryzen 7 5800X CPU and an NVIDIA RTX3090

GPU. We execute training and prediction for the base MalConv

model on the GPU, and input randomization on the CPU. We use

a single PyTorch process, noting that times may be improved by

enabling parallel processing for input randomization.
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Figure 5: Certified true positive rate (TPR) and true negative
rate (TNR) of RS-Del as a function of the certificate radius 𝑟
(horizontal axis) and the decision threshold 𝜂1 (colored line
styles). The results are plotted for the Sleipnir2 test set with
𝑝del = 99.5% under the byte-level Levenshtein distance threat
model (with 𝑂 = {del, ins, sub}). It is apparent that 𝜂1 controls
a tradeoff in the certified radius between the malicious (mea-
sured by TPR) and benign (measured by TNR) classes. Note
that in this setting, a non-smoothed, non-certified detector
(NS) achieves a clean TPR and TNR of 98.2% and 99.5% respec-
tively.

We nowmake some observations about the results. First, we note

that training is an order of magnitude faster for RS-Del compared

with RS-Abn. This is due to the deletion randomization scheme we

propose for RS-Del, which drastically reduces the length of inputs,

thereby reducing the time taken to perform forward and backward

passes for the base detector. On the contrary, the ablation random-

ization scheme for RS-Abn does not alter the length of inputs, so it

does not have a performance advantage in this respect. Second, we

note that there is no significant difference in the prediction time

for the two detectors. While the time taken to pass the randomized

inputs through the base detector is an order of magnitude faster

for RS-Del, it does not have an impact on the total prediction time,

as input randomization dominates.

Training efficiency. Training curves for the base MalConv de-

tectors used in RS-Del and RS-Abn are provided in Figure 6 for

the Sleipnir2 dataset. RS-Del is trained using stochastic gradient
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Table 8: Raw certified accuracy data used in Figure 3. Here
we provide data for RS-Del with 𝑝del = 99.5% (our method)
and RS-Abn with 𝑝ab = 99.5% [46]. Note that the certificates
are for the Hamming distance threat model.

Certified accuracy (%)

Radius RS-Del RS-Abn

110 92.33 82.26

112 92.19 82.01

114 92.07 81.90

116 91.89 81.67

118 91.79 81.39

120 91.68 81.17

122 91.59 80.82

124 91.53 79.96

126 91.35 78.70

128 91.09 78.29

130 88.43 77.86

132 86.78 77.13

134 86.39 75.32

136 85.03 68.02

138 – 25.84

140 – 0.09

142 – 0.03

144 – 0.01

Table 9: Comparison of runtime efficiency for RS-Del (our
method) and RS-Abn [46]. The first column of wall times
measures the time taken to train the base detector MalConv
for one epoch on Sleipnir2. The second and third columns of
wall times decompose the time to make a prediction for the
smoothed detector for a 1MB input file. The second column
measures the time taken to apply the randomization scheme
𝑛

pred
= 1000 times and the third column measures the time

taken pass the randomized inputs through the base detector.

Wall time (s)

Predict

Train Randomize Base

Detector Parameters 1 epoch input predict

RS-Del 𝑝del = 0.9, Byte 354 10.42 0.070

RS-Del 𝑝del = 0.9, Insn 494 20.16 0.068

RS-Abn [46] 𝑝ab = 0.9 1692 15.29 0.352

RS-Del 𝑝del = 0.99, Byte 329 8.79 0.043

RS-Del 𝑝del = 0.99, Insn 544 18.62 0.043

RS-Abn [46] 𝑝ab = 0.99 1788 15.60 0.352

descent following standard parameters settings for MalConv [64].

Due to convergence issues for RS-Abn, we adapted training to incor-
porate gradient clipping when updating the embedding layer. This

addresses imbalance in the gradients arising from the dominance of

masked (ablated) values in the randomized inputs. However, even

with this fix, we observe slower convergence to a higher loss value

for RS-Abn than for RS-Del.

Combining the results of Table 9 and Figure 6, we conclude that

RS-Abn beats RS-Abn in terms of training efficiency as it requires

both fewer epochs to converge and takes less time per epoch.
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Figure 6: Training curves for RS-Del (our method) using byte-
level deletion and RS-Abn [46] for the Sleipnir2 dataset.

E PARAMETER SETTINGS FOR MALCONV
In this appendix, we specify the parameter settings and training

procedure for MalConv, which is used as a standalone malware

detector in NS, and as a base malware detector for RS-Del and
RS-Abn. Table 10 summarizes our setup, which is consistent across

all three detectors except where specified. We follow the authors

of MalConv [64] when setting parameters for the model and the

optimizer, however we set a larger maximum input size of 2MiB to

accommodate larger files without clipping. Due to differences in

available GPU memory for the Sleipnir2 and VTFeed experiments,

we use a larger batch size for VTFeed than for Sleipnir2. We also set

a higher limit on the maximum number of epochs for VTFeed, as it
is a larger dataset, although the NS and RS-Del detectors converge
within 50 epochs for both datasets. To stabilize training for the

randomized smoothed malware detectors (RS-Del and RS-Abn), we
modify the randomization schemes during training only to ensure

at least 500 raw bytes are preserved. This may limit the number of

deletions for RS-Del and the number of ablated (masked) bytes for

RS-Abn. For RS-Abn, we clip the gradients for the embedding layer

to improve convergence (see Appendix D).
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Table 10: Parameter settings for the MalConv model, opti-
mizer and training procedure. The parameter settings are
consistent across all detectors (NS, RS-Del, RS-Abn) except
where specified.

MalConv hyperparameters

Max input size 2097152

Embedding size 8

Window size 500

Channels 128

Optimizer

Optimizer torch.optim.SGD

Learning rate 0.01

Momentum 0.9

Weight decay 0.001

Training

Batch size 24 (Sleipnir2), 32 (VTFeed)
Max. epoch 50 (Sleipnir2), 100 (VTFeed)
Min. preserved

bytes

500 (RS-Del, RS-Abn), NA (NS)

Embedding gradient

clipping

0.5 (RS-Abn),∞ (RS-Del, NS)

Early stopping

If validation loss does not

improve after 10 epochs
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