
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Certified Robustness of Learning-based Static Malware Detectors
Anonymous Author(s)

ABSTRACT
Certified defenses are a recent development in adversarial machine

learning (ML), which aim to rigorously guarantee the robustness of

ML models to adversarial perturbations. A large body of work stud-

ies certified defenses in computer vision, where ℓ𝑝 norm-bounded

evasion attacks are adopted as a tractable threat model. However,

this threat model has known limitations in vision, and is not ap-

plicable to other domains—e.g., where inputs may be discrete or

subject to complex constraints. Motivated by this gap, we study

certified defenses for malware detection, a domain where attacks

against ML-based systems are a real and current threat. We con-

sider static malware detection systems that operate on byte-level

data. Our certified defense is based on the approach of randomized
smoothing which we adapt by: (1) replacing the standard Gauss-

ian randomization scheme with a novel deletion randomization

scheme that operates on bytes or chunks of an executable; and

(2) deriving a certificate that measures robustness to evasion at-

tacks in terms of generalized edit distance. To assess the size of

robustness certificates that are achievable while maintaining high

accuracy, we conduct experiments on malware datasets using a

popular convolutional malware detection model, MalConv. We are

able to accurately classify 91% of the inputs while being certifiably

robust to any adversarial perturbations of edit distance 128 bytes or

less. By comparison, an existing certification of up to 128 bytes of

substitutions (without insertions or deletions) achieves an accuracy

of 78%. In addition, given that robustness certificates are conserva-

tive, we evaluate practical robustness to several recently published

evasion attacks and, in some cases, find robustness beyond certified

guarantees.

CCS CONCEPTS
• Security and privacy→ Logic and verification; Malware and
its mitigation; • Computing methodologies→ Machine learning.

KEYWORDS
certified robustness, malware detection, adversarial machine learn-

ing

ACM Reference Format:
Anonymous Author(s). 2023. Certified Robustness of Learning-based Static

Malware Detectors. In Proceedings of ACM Conference on Computer and
Communications Security (CCS ’23). ACM, New York, NY, USA, 19 pages.

https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’23, Month 01–05, 2023, Woodstock, NY
© 2023 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Machine learning (ML) is impacting many areas of computing

thanks to its ability to generalize to complex and unseen data.

However, vulnerability of ML models to evasion attacks (a.k.a. ad-

versarial examples) raises concerns about using these models in

practice. For example, successful attacks have been demonstrated

in general settings [30, 35] and domains such as computer vi-

sion [26, 33, 74], natural language [3, 29, 67], and malware detec-

tion [20, 21, 40, 42, 52, 60, 76, 77]. While a multitude of defenses

have been proposed against evasion attacks, they have historically

been broken by stronger attacks. For instance, adversarial training

with the Fast Gradient Sign Method [30] and defensive distillation

[59] are two defenses that were subsequently found to be ineffec-

tive [12, 79]. Six of nine defense papers accepted for presentation

at ICLR2018 were defeated months before the conference took

place [4]; another tranche of thirteen defenses were circumvented

shortly later [78]. Motivated by the arms race between attackers

and defenders, a line of work called certified robustness has emerged,

which aims to guarantee that a model is immune to a specified set

of attacks [66, 89].

Certified robustness has the greatest prominence in computer

vision. The state-of-the-art for ImageNet correctly classifies 71% of

a test set, while guaranteeing that the classifications are invariant

under ℓ2-norm bounded attacks of size 127/255 (half maximum

pixel intensity) [11]. In computer vision, ℓ𝑝 -norm bounded per-

turbations are commonly considered as a tractable approximation

for visual imperceptibility, despite known limitations. User studies

have shown that perturbations with small ℓ𝑝 -norm can be reliably

detected through casual inspection, while imperceptible changes

can cover large ℓ𝑝 distances [73]. For example, robust defenses can

be circumvented by image translation, rotation, blur, and pixela-

tion [28, 48]. Moreover, little is known about certified robustness

beyond the ℓ𝑝 threat model, in part because it has had little exami-

nation outside computer vision, with few exceptions [37, 58, 67, 92].

To address this gap in certified robustness research, we focus

on the static malware detection domain, where evasion attacks

are well established. Detecting malicious software (malware) is

critical in system security and has advanced considerably over the

past couple of decades to keep pace with novel threats, including

evasive malware variants and zero-day exploits. ML is starting to

play an important role in this advancement. It is now deployed

in many commercial systems [7, 39, 54, 80] and remains an active

area of research [1, 49, 65, 82]. Despite the apparent advantage of

ML in generalizing to novel malware, recent research has shown

that ML-based static malware detectors can be evaded by applying

adversarial perturbations to malware [20–22, 40, 42, 52, 60, 76, 77].

A variety of perturbations have been considered with different

effects at the semantic level, however all of them can be modeled

as inserting, deleting and/or substituting bytes. Certifying static

ML-based malware detectors within this general threat model—

where an attacker can perform byte-level edits—requires advancing

certified robustness research. While commercial malware detectors

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

CCS ’23, Month 01–05, 2023, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

use both static and dynamic analysis [5, 7, 8, 80], published evasion

attacks are less developed for this hybrid setting. Overcoming static

malware detectors is a realistic goal for adversaries, as they may be

used to protect end-user systems [16, 83] and obtaining white-box

access may be trivial (e.g., by purchasing a license).

In this paper, we seek to answer three research questions at the

nexus of certified robustness and malware detection.

(Q1) How can certified robustness methods be adapted to the mal-
ware detection domain?

Existing certified robustness methods are designed for models

that operate on fixed-dimensional numeric arrays, under the as-

sumption that an attacker can only make perturbations with small,

bounded ℓ𝑝 -norm. While these assumptions are relatively accepted

for the vision domain, they are fundamentally incompatible with

malware detection, where inputs are variable-length byte arrays—

the most general representation of an executable. To this end, we

consider an attacker that perturbs a file by inserting, deleting or

substituting bytes, in place of additive perturbations. We describe

this new problem setting for certified robustness in Section 2, be-

fore proposing a novel certification mechanism in Section 3. Our

certification mechanism, called randomized deletion smoothing

(RS-Del), adapts randomized smoothing [17] by replacing Gauss-

ian input randomization with randomized deletions, and may be

of independent interest. We customize our mechanism for several

threat model variations, and make practical optimizations for com-

putational efficiency.
1

While certified robustness provides a theoretical framework for

measuring the robustness of a model to attacks, it does not provide

any guarantees about accuracy. We therefore ask,

(Q2) What kind of tradeoffs are possible between accuracy and
robustness guarantees for malware detection?

To answer this question, we evaluate our randomized deletion

smoothing mechanism on two malware detection datasets using

a deep malware detection model [64] in Section 4.2. By varying

the aggressiveness of smoothing we examine tradeoffs between

robustness certification and accuracy. We find that it is possible to

maintain a high accuracy of 91% while guaranteeing robustness

to adversarial edits of up to 128 bytes on average, which exceeds

edit distances of two published evasion attacks [20, 22]. This sug-

gests potential for operationalizing certifications of static malware

detection, in some cases.

It is well-known that certified robustness guarantees are conser-

vative due to model independence or relying on bounds that are

not tight in general [25]. Consequently, we ask,

(Q3) Howwell does our randomized deletion smoothingmechanism
protect against evasion attacks in practice?

To answer this question, we apply five published evasion attacks

[20, 21, 42, 52, 57] against an undefended model and a model em-

ploying our randomized deletion smoothing (RS-Del). We find that

RS-Del is surprisingly helpful at delivering additional robustness

beyond what is guaranteed. That is, even though the distance of at-

tack perturbations is beyond the certified radius of RS-Del, it is still
effective at distinguishing malware and benign samples. For exam-

ple, the attack success rate against RS-Del is 0% compared to 12.9%

1
We will release an open-source implementation of our mechanisms upon publication.

for an unprotected classifier when up to 17.2KB of a file is perturbed

with a displacement attack [52]. This is orders of magnitude larger

than the edit distance radius of certification returned by RS-Del.
Full attack experimental results are presented in Section 4.3, where

we highlight cases where RS-Del’s defense capabilities are effective
and where further protection is necessary.

2 PROBLEM FORMULATION
In this section, we provide background on static malware detec-

tion, specify a threat model for evasion attacks on static malware

detectors, and introduce certified robustness in the context of static

malware detection, where inputs are represented as raw byte arrays.

2.1 Static malware detection
We model a malware detector as a function 𝑓 : X → {0, 1} that
returns 1 if the input executable file x ∈ X is predicted to be mali-

cious and 0 otherwise. We assume executable files are represented

as byte arrays, where X = {0, . . . , 255}★ is the space of byte arrays

of arbitrary length. For compatibility with randomized smoothing

(discussed in Section 3), we assume 𝑓 is able to make predictions

for incomplete files where chunks of bytes have been arbitrarily

removed. This assumption can be satisfied by machine learning-

based static malware detectors, as demonstrated in our experiments

(Section 4). We note that dynamic malware detectors do not satisfy

this assumption, since they monitor behavior during execution,

which is not generally possible for an incomplete executable file.

2.2 Threat model
We next outline the modeled attacker’s goals, capabilities, and in-

formation about the detector [6].

2.2.1 Attacker’s objective. We consider evasion attacks, where the

attacker’s objective is to transform an executable file x so that it is

misclassified by a malware detector 𝑓 . To ensure the attacked file x̄
is useful after evading detection, we require that it is functionally-
equivalent to the original file x. We focus on evasion attacks that

misclassify malware as benign in our experiments, as these attacks

dominate prior work [22]. However, for generality we also consider

attacks in the opposite direction—where a benign file is misclassi-

fied as malicious—when outlining our threat model and deriving

robustness certificates.

2.2.2 Attacker’s capability. We measure the attacker’s capability

in terms of the number of elementary edits they can make to the

original file x. If the attacker is capable of making up to 𝑐 elementary

edits, then they can transform x into any file in the edit distance

ball of radius 𝑐 centred on x:

A𝑐 (x) = {x̄ ∈ X : dist𝑂 (x, x̄) ≤ 𝑐}. (1)

Here dist𝑂 (x, x̄) denotes the edit distance from the original file x to
the attacked file x̄ under the set of edit operations (ops) 𝑂 . Unless

otherwise specified, we assume 𝑂 consists of byte-level deletions

(del), insertions (ins) and substitutions (sub), however our analysis
covers attackers that are constrained to a subset of these operations

as outlined in Table 1. We also consider attackers than perform

instruction-level edits in Section 3.3.3.

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Certified Robustness of Learning-based Static Malware Detectors CCS ’23, Month 01–05, 2023, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

We note that edit distance is a reasonable proxy for the cost of

running evasion attacks that iteratively apply localized functionality-

preserving edits (e.g., [20, 52, 57, 60, 76]). For these attacks, the edit

distance scales roughly linearly with the number of attack itera-

tions, and therefore the adversary has an incentive to minimize

edit distance. While attacks do exist that make large edits of or-

der megabytes in size (e.g., [21]), we believe that an edit distance-

constrained threat model is an important step towards realistic

threat models for certified malware detection. (To examine the ef-

fect of large edits on robustness we include theGAMMA attack [21]

in our Section 4.3 experiments.)

Remark 2.1. The setA𝑐 (x) overestimates the capability of an edit
distance-constrained attacker, because it may include files that are

not functionally equivalent to x. For example, A𝑐 (x) may include

files that are not malicious (assuming x is malicious) or files that are

not valid executables. This poses no problem for certification, since

overestimating an attacker’s capability merely leads to a stronger

certificate than required. Indeed, overestimating the attacker’s ca-

pability seem necessary, as functionally equivalent files are difficult

to specify, let alone analyze.

2.2.3 Malware detector access. We consider attackers with black-

or white-box access to the malware detector. In the black-box set-

ting, the attacker may make an unlimited number of queries to

the malware detector without observing its internal operation. We

permit access to detection confidence scores, which are returned

alongside predictions even in the black-box setting. In thewhite-box

setting, the attacker can additionally inspect the malware detec-

tor’s source code. Such a strong assumption is needed for white-box

attacks that compute loss gradients with respect to the detector’s

internal representations of the input file [42, 52].

2.3 Certified robustness
To provide assurance that a malware detector is robust to evasion at-

tacks, we adapt the concept of certified robustness from the machine

learning literature. Most existing definitions of certified robustness

aim to guarantee that a classifier’s prediction is stable, even if the

input is perturbed within an ℓ𝑝 neighborhood [17, 43, 44, 89]. This

definition is ill-suited for malware detection because it implicitly

assumes inputs are fixed-dimension numeric arrays, and that the

array values can be perturbed continuously. To adapt the definition,

we replace the ℓ𝑝 neighborhood with an edit distance neighborhood

concordant with our threat model. This is formalized below.

Definition 2.2. An edit distance robustness certificate of radius 𝑟 for
a malware detector 𝑓 at input file x is a guarantee that 𝑓 (x) = 𝑓 (x′)
for all x′ in the edit distance neighborhood

N𝑟 (x) = {x′ ∈ X : dist𝑂 (x′, x) ≤ 𝑟 }.
To see how this certificate can provide assurance against eva-

sion attacks, consider the following scenario. Suppose an edit-

constrained attacker produces an attacked file x̄ ∈ A𝑐 (x) based
on an original file x. The attacked file is subsequently submitted

to a malware detector, which produces an edit distance robustness

certificate of radius 𝑟 . If 𝑟 ≥ 𝑐 then x must be in the edit distance

neighborhoodN𝑟 (x̄), which implies 𝑓 (x) = 𝑓 (x̄). Hence if the mal-

ware detector’s prediction is correct for the original file x it cannot

be fooled by the “attacked” file x̄.

When designing certification mechanisms in this paper, we

adopt the so-called “conservative” or “sound but incomplete” para-

digm [17]. Under this paradigm, a mechanism may accept or decline
to issue an edit distance certificate of a given radius 𝑟 . If the mech-

anism accepts, the guarantee described in Definition 2.2 must hold,

possibly with high probability. On the other hand, if the mechanism

declines, it makes no statement about whether the guarantee holds.

3 METHODOLOGY
In this section, we address research question Q1 by adapting the

certification approach of randomized smoothing to the malware

detection domain. To begin, in Section 3.1, we review randomized

smoothing and propose a deletion randomization scheme called RS-
Del that is alignedwith our edit distance threat model. In Section 3.2,

we derive a closed form edit distance certificate for RS-Del using
lower bounds on the detection confidence. Finally, in Section 3.3,

we present practical algorithms for probabilistic certification and

discuss how to exploit information from a disassembler to enhance

RS-Del, both in terms of the deletion randomization scheme and

the semantics of the edit distance certificate.

3.1 RS-Del: Randomized deletion smoothing
In robust machine learning, smoothing is a technique that averages

a model’s output with respect to randomized inputs. It has been

applied as a heuristic defense against evasion attacks in the vision

domain [10, 50], owing to its ability to reduce a model’s sensitivity

to noise or fine-scale variations. More recently, it has been shown to

achieve certified robustness in a framework known as randomized
smoothing [17, 43, 47, 71]. Most existing applications of randomized

smoothing employ additive Gaussian or Laplace noise when ran-

domizing inputs, yielding ℓ𝑝 robustness certificates. However, these

randomization schemes are inappropriate for malware detection, as

they erroneously assume input byte values are numeric when they

are best treated as categorical, and they erroneously assume input

files are the same size, even though file sizes may vary. To address

these incompatibilities, we propose randomized deletion smoothing
(RS-Del) which randomizes inputs by deleting bytes, while yielding

edit distance robustness certificates.

3.1.1 Smoothed malware detectors. We begin with a generic for-

mulation of randomized smoothing following Lee et al. [44]. Con-

sider a “base” malware detector 𝑓
b
and a randomization scheme

𝜙 : X → D(X) that maps an input file to a distribution over the

space of input files. Let

𝑝𝑦 (x; 𝑓
b
) = Pr

z∼𝜙 (x)
[𝑓

b
(z) = 𝑦] (2)

denote the probability that 𝑓
b
predicts 𝑦 for an input file x random-

ized according to 𝜙 (we omit the dependence on 𝑓
b
where it is clear

from context). The smoothed malware detector 𝑓 composed from

𝑓
b
and 𝜙 is defined as

𝑓 (x) = arg max

𝑦∈{0,1}
𝑝𝑦 (x) − 𝜂𝑦 (3)

where 𝜂1 ∈ (0, 1) is a decision threshold and 𝜂0 := 1 − 𝜂1. In

words, the smoothedmalware detector predicts𝑦 if the base detector

predicts 𝑦 with probability 𝑝𝑦 (x) exceeding 𝜂𝑦 for random inputs

drawn from 𝜙 (x).
3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

CCS ’23, Month 01–05, 2023, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Remark 3.1. Previous definitions of randomized smoothing do

not incorporate a tunable decision threshold 𝜂1 and effectively

assume 𝜂1 = 𝜂0 = 1

2
. A tunable decision threshold is useful for

malware detection as a way of controlling false positive and false

negative errors. It can be tuned in addition to any decision thresh-

olds associated with the base detector.

3.1.2 Design considerations for 𝜙 . The behavior of a smoothed

malware detector is strongly influenced by the choice of randomiza-

tion scheme 𝜙 . When choosing a scheme, we must trade off utility

(accuracy) and robustness. Practically, we can improve utility by

choosing a scheme that adds less noise to the input, especially

noise that would obscure or destroy information relevant to detec-

tion. On the other hand, we can improve robustness by choosing

a scheme that adds more noise, so that neighboring randomized

inputs become indistinguishable to the base detector. More pre-

cisely, we would like the statistical distance between 𝜙 (x) and 𝜙 (x̄)
to be small for any input files x and x̄ that are close in edit dis-

tance. Secondary to robustness and accuracy considerations, we

also consider the efficiency of certification. Deriving a tight com-

putationally efficient certificate may be difficult or impossible for

some randomization schemes—in the worst case it may be difficult

to outperform certification by brute force search.

3.1.3 Deletion randomization scheme. To satisfy the design consid-

erations, we propose a randomization scheme that edits an input

file by deleting bytes. We specify the scheme as a two-stage pro-

cess. In the first stage, a random edit 𝜖 is drawn from a distribution

𝐺 (x) over the space of possible edits to x, denoted E(x). Since
we only consider byte deletions, any edit can be represented as a

set of byte indices in {1, . . . , |x|} that remain post-deletion. Thus

E(x) = 2
{1,..., |x | }

. We set the distribution 𝐺 (x) so that each byte is

deleted i.i.d. with probability 𝑝del ∈ (0, 1):

Pr[𝐺 (x) = 𝜖] =
|x |∏
𝑖=1

𝑝
[𝑖∉𝜖 ]
del (1 − 𝑝del)

[𝑖∈𝜖 ] . (4)

In the second stage, the edit 𝜖 drawn from 𝐺 (x) is applied to x to

yield a new file:

z = apply(x, 𝜖) B
(
𝑥𝜖 (𝑖 )

)
𝑖=1... |𝜖 |

, (5)

where 𝜖 (𝑖 ) denotes the 𝑖-th smallest element in 𝜖 . The new file z is
guaranteed to be a subsequence of x. Putting both stages together,

the distribution of our randomization scheme 𝜙 satisfies

Pr[𝜙 (x) = z] =
∑︁

𝜖∈E (x)
Pr[𝐺 (x) = 𝜖]1

apply(x,𝜖 )=z . (6)

Remark 3.2. It may be surprising that our randomization scheme

does not use the full set of edit ops 𝑂 available to the attacker.

It is a misconception that smoothing requires perfect alignment

between the randomization scheme and the threat model. All that

is needed from a robustness perspective, is for the scheme to return

distributions that are statistically close for any pair of inputs that

are neighboring according to the threat model; this can be achieved

solely with deletion. In fact, perfect alignment is known to be sub-

optimal for some ℓ𝑝 threat models [91]. Our deletion scheme leads

to a tractable robustness certificate covering the full set of edit

ops (see Section 3.2). Moreover while benefiting robustness, our

empirical results show that our deletion scheme has only a minor

impact on accuracy (see Section 4.2). Finally, our deletion scheme

reduces the size of the input file, which is beneficial for computa-

tional efficiency (see Appendix D). This is not true in general for

schemes employing insertions/substitutions.

3.2 Edit distance certificate
We now turn to the problem of deriving an edit distance robustness

certificate for RS-Del. We specify information the certificate may

depend on in Section 3.2.1. We then present the derivation in three

parts: Section 3.2.2 provides an outline, Section 3.2.3 derives a lower

bound on the probability score of RS-Del and Section 3.2.4 uses

the bound to complete the derivation. All proofs are presented in

Appendix B.

3.2.1 Information availability. Following prior work [17, 43], we

assume limited information about RS-Del is available when com-

puting a certificate. This is to both improve tractability and ensure

the certificate does not depend on architectural details of the base

detector used with RS-Del. Concretely, let x̄ ∈ X be a (possibly

adversarial) input file for which we would like to certify the ro-

bustness of RS-Del, denoted 𝑓 . The only information we use when

deriving the certificate is: (1) the input file x̄, (2) the prediction

of RS-Del 𝑦 = 𝑓 (x̄), (3) the probability score of RS-Del for the
prediction 𝜇𝑦 = 𝑝𝑦 (x̄; 𝑓

b
), (4) the decision threshold 𝜂𝑦 of RS-Del,

and (5) the deletion randomization scheme 𝜙 specified in (6).

3.2.2 Derivation outline. We derive edit distance robustness cer-

tificates aligned with our threat model (see Section 2.2). In doing so,

we consider attackers with varying constraints on the edit ops 𝑂

they can apply. The main results are summarized in Table 1, where

we provide the radius 𝑟 of the certificate as a function of 𝑦, 𝜇𝑦 , 𝜂𝑦
and 𝑝del.

To set the stage for the derivation, recall from Definition 2.2 that

an edit distance robustness certificate of radius 𝑟 can be issued for

an input x̄ iff 𝑓 (x̄) = 𝑓 (x) for all x in the edit distance neighbor-

hoodN𝑟 (x̄). This condition is equivalent to requiring that RS-Del’s
probability scores for 𝑦 exceed the detection threshold 𝜂𝑦 in the

neighborhood, i.e.

min

x∈N𝑟 (x̄)
𝑝𝑦 (x; 𝑓

b
) > 𝜂𝑦 . (7)

While it is theoretically possible to solve the minimization problem

above, it is technically infeasible due to the size of the neighbor-

hood and the apparent need to resort to brute force search (see

Appendix A). We therefore replace the LHS of (7) by a tractable

lower bound, noting that if the resulting inequality holds, then (7)

holds and we may issue a certificate.

We proceed with the derivation in two steps. In the first step,

covered in Section 3.2.3, we replace the objective of the minimiza-

tion problem 𝑝𝑦 (x; 𝑓
b
) by a lower bound. Then in the second step,

covered in Section 3.2.4, we complete the derivation by minimizing

the lower bound over the edit distance neighborhood.

3.2.3 Lower bound on the probability scores. We seek a lower

bound on the RS-Del’s probability score 𝑝𝑦 (x; 𝑓
b
) that satisfies

the following requirements: (1) the bound must hold for all x in

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Certified Robustness of Learning-based Static Malware Detectors CCS ’23, Month 01–05, 2023, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 1: Edit distance certificates as a function of the edit ops𝑂 the attacker is capable of, the strength of deletion smoothing 𝑝del,
the confidence 𝜇𝑦 of RS-Del in its prediction 𝑦, and the decision threshold 𝜂𝑦 .

Edit ops 𝑂 {ins} {del} {del, ins} {del, ins, sub} {sub} {ins, sub} {del, sub}

Edit dist. name Episode [18] – LCS Levenshtein Hamming – –

Certified

radius 𝑟

⌊
log

1−𝜇𝑦
1−𝜂𝑦

log𝑝del

⌋ ⌊
log

𝜂𝑦

𝜇𝑦

log𝑝del

⌋ ⌊
log

𝜂𝑦

𝜇𝑦

log𝑝del

⌋ ⌊
log(1+𝜂𝑦−𝜇𝑦 )

log𝑝del

⌋ ⌊
log(1+𝜂𝑦−𝜇𝑦 )

log𝑝del

⌋ ⌊
log(1+𝜂𝑦−𝜇𝑦 )

log𝑝del

⌋ ⌊
log(1+𝜂𝑦−𝜇𝑦 )

log𝑝del

⌋
the edit distance neighborhood N𝑟 (x̄), and (2) the bound must be

independent of the base detector 𝑓
b
which is assumed unknown.

To begin, we write 𝑝𝑦 (x; 𝑓
b
) as a sum over the edit space by

combining (2) and (6):

𝑝𝑦 (x; 𝑓
b
) =

∑︁
𝜖∈E (x)

𝑠 (𝜖, x; 𝑓
b
), (8)

with 𝑠 (𝜖, x; 𝑓
b
) = Pr [𝐺 (x) = 𝜖] 1𝑓

b
(apply(x,𝜖 )=𝑦) . (9)

Wewould like to rewrite this in terms of the known probability score

at x̄, 𝜇𝑦 = 𝑝𝑦 (x̄; 𝑓
b
) = ∑

𝜖∈E (x̄) 𝑠 (𝜖, x̄; 𝑓
b
). To do so, we identify

pairs of edits 𝜖 to x and 𝜖 to x̄ for which the corresponding terms

𝑠 (𝜖, x; 𝑓
b
) and 𝑠 (𝜖, x̄; 𝑓

b
) are proportional.

Lemma 3.3 (Eqivalent edits). Let z★ be a longest common
subsequence (LCS) [86] of x and x̄, and let 𝜖★ ∈ E(x) and 𝜖★ ∈ E(x̄)
be any edits such that apply(x, 𝜖★) = apply(x̄, 𝜖★) = z★. Then there
exists a bijection𝑚 : 2

𝜖★ → 2
𝜖★ such that apply(x, 𝜖) = apply(x̄, 𝜖)

for any 𝜖 ⊆ 𝜖★ and 𝜖 = 𝑚(𝜖). Furthermore, we have 𝑠 (𝜖, x; 𝑓
b
) =

𝑝
|x |− |x̄ |
del 𝑠 (𝜖, x̄; 𝑓

b
).

Applying this proportionality result to all pairs of edits 𝜖, 𝜖 re-

lated under the bijection𝑚 yields:∑︁
𝜖∈2

𝜖★

𝑠 (𝜖, x; 𝑓
b
) = 𝑝

|x |− |x̄ |
del

∑︁
𝜖∈2

𝜖★

𝑠 (𝜖, x̄; 𝑓
b
).

Thus we can achieve our goal of writing 𝑝𝑦 (x; 𝑓
b
) in terms of 𝜇𝑦 =

𝑝𝑦 (x̄; 𝑓
b
). A simple rearrangement of terms gives:

𝑝𝑦 (x; 𝑓
b
) = 𝑝

|x |− |x̄ |
del

©«𝜇𝑦 −
∑︁

𝜖∉2
𝜖★

𝑠 (𝜖, x̄; 𝑓
b
)ª®¬ +

∑︁
𝜖∉2

𝜖★

𝑠 (𝜖, x; 𝑓
b
).

(10)

This representation is convenient for deriving a lower bound. Specif-

ically, we can drop the sum over 𝜖 ∉ 2
𝜖★

and upper-bound the sum

over 𝜖 ∉ 2
𝜖★

to obtain a lower bound that is independent of 𝑓
b
.

Theorem 3.4 (Lower bound). Let z★ be a longest common sub-
sequence of x and x̄, and assume 𝜇𝑦 = 𝑝𝑦 (x̄; 𝑓

b
). Then

𝑝𝑦 (x; 𝑓
b
) ≥ lb(x; x̄, 𝜇𝑦) = 𝑝

|x |− |x̄ |
del

(
𝜇𝑦 − 1 + 𝑝 |x̄ |− |z

★ |
del

)
. (11)

3.2.4 Edit distance certificate. To complete the derivation we mini-

mize the lower bound in (11) over the edit distance neighborhood:

𝜌 (x̄; 𝜇𝑦) = min

x∈N𝑟 (x̄)
lb(x; x̄, 𝜇𝑦) . (12)

Recall that we are interested in general edit distance neighbor-

hoods, where the edit ops 𝑂 used to define the edit distance may

be constrained—e.g., deletions may not be allowed in the threat

model of the attacker. As a step towards solving the minimization

problem, it is therefore useful to express lb(x; x̄, 𝜇𝑦) in terms of the

edit ops, as shown below.

Corollary 3.5. Suppose there exists an edit path from x to x̄ that
consists of 𝑛sub substitutions, 𝑛ins insertions and 𝑛del deletions such
that 𝑛sub + 𝑛ins + 𝑛del = dist𝑂 (x, x̄) and 𝑛sub, 𝑛ins, 𝑛del ≥ 0. Then

lb𝑦 (x; x̄, 𝜇𝑦) = 𝑝
𝑛del−𝑛ins
del

(
𝜇𝑦 − 1 + 𝑝𝑛sub+𝑛ins

del

)
.

This parameterization of the lower bound enables us to re-express

(12) as an optimization problem over counts of edit ops:

𝜌 (x̄; 𝜇𝑦) = min

𝑛sub,𝑛ins,𝑛del∈C𝑟
𝑝
𝑛del−𝑛ins
del

(
𝜇𝑦 − 1 + 𝑝𝑛sub+𝑛ins

del

)
, (13)

where C𝑟 encodes constraints on the set of counts. If the edit ops

𝑂 are unconstrained so that insertions, deletions and substitutions

are all allowed, then the edit distance is known as the Levenshtein
distance and C𝑟 consists of sets of counts that sum to 𝑟 . We solve

the minimization problem for this case below.

Theorem 3.6 (Levenshtein distance certificate). Suppose
an RS-Del malware detector 𝑓 predicts 𝑦 with probability score 𝜇𝑦
for input file x̄. Then a lower bound on the malware detector’s proba-
bility score within the Levenshtein distance neighborhood N𝑟 (x̄) is
𝜌 (x̄; 𝜇𝑦) = 𝜇𝑦 − 1 + 𝑝𝑟del. It follows that the largest radius at which
we can issue a Levenshtein distance robustness certificate is

𝑟 =

⌊
log

(
1 + 𝜂𝑦 − 𝜇𝑦

)
log𝑝del

⌋
.

This is known as the certified radius.

It is straightforward to adapt this result to account for constraints

on the edit ops 𝑂 . Results for all combinations of edit ops are

provided in Table 1.

3.3 Practical considerations
Before we can implement RS-Del and the certificate developed in

the previous sections, we must consider several practical issues.

First, given that evaluating RS-Del exactly requires brute force enu-

meration over all possible deletions, we present a sampling-based

approximation in Section 3.3.1 and adapt the robustness certificate

to account for sampling error. Second, in Section 3.3.2, we show

how to train a base malware detector for use RS-Del. And third, in

Section 3.3.3, we discuss how to use information from a disassem-

bler to improve the semantics of the threat model and certificates. In

particular, we advocate for associating groups of bytes with instruc-

tions, and constraining the threat model to operate on such bytes

as one unit. This can prune invalid instructions from the attacker’s

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

CCS ’23, Month 01–05, 2023, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

action space, leading to larger certified regions. We note that the

sampling-based approximation and input randomization training

described in Sections 3.3.1 and 3.3.2 follow standard practice in the

randomized smoothing literature [17].

3.3.1 Approximating RS-Del via sampling. To evaluate and certify

RS-Del at input x̄, we must compute the probability scores 𝜇𝑦 =

𝑝𝑦 (x̄) defined in (2). Computing the scores exactly is infeasible,

since it is necessary to enumerate all subsequences of x̄ and their

probabilities under 𝜙 (x̄), which takes exponential time in |x̄|. We

therefore follow standard practice in randomized smoothing [17]

and approximate the score 𝜇𝑦 using a sample of randomized inputs

{z1, . . . , z𝑛} drawn i.i.d. from 𝜙 (x̄):

𝜇𝑦 =
1

𝑛

𝑛∑︁
𝑖=1

1𝑓
b
(z𝑖 )=𝑦 . (14)

We can estimate a lower bound on 𝜇𝑦 to account for sampling

error by applying a binomial test:

𝜇𝑦 = LowerConfBound
(∑𝑛

𝑖=1
1𝑓

b
(z𝑖 )=𝑦, 𝑛, 𝛼

)
(15)

where LowerConfBound(𝑘, 𝑛, 𝛼) returns a one-tailed 1 − 𝛼 confi-

dence interval for 𝜇𝑦 given a sample 𝑘 ∼ Binomial(𝑛, 𝜇𝑦). We use

this lower bound in Algorithm 1 to compute a certificate that holds

with probability 1 − 𝛼 . The validity of Algorithm 1 relies on a gen-

eralization of Theorem 3.6 and Table 1 to the probabilistic setting

as asserted below.

Corollary 3.7. Suppose Algorithm 1 predicts 𝑦 with certified
radius 𝑟 . Then an edit distance robustness certificate of radius 𝑟 holds
at x̄ with probability 1 − 𝛼 .

We now make a few comments about the design and usage of

Algorithm 1. We emphasize that independent samples are used for

estimating RS-Del’s prediction (lines 1–2) and bounding RS-Del’s
confidence in that prediction (line 3). This avoids the need to per-

form a correction for multiple hypothesis tests. In our experiments,

we use a smaller number of samples for prediction 𝑛
pred

= 1000

since we observe low variance, and a higher number of samples

for bounding the confidence 𝑛
bound

= 4000, since doing so may po-

tentially improve the radius. If the lower bound on the probability

score for the predicted class 𝜇 �̂� is less than the class-specific thresh-

old 𝜂�̂� , we require that RS-Del abstains from making a prediction

since it would not be robust (line 6).

3.3.2 Training RS-Del. Though RS-Del is theoretically compatible

with any base detector, it will generally perform poorly for con-

ventionally trained base detectors. This is because the distribution

of randomized inputs is likely to be very different from the dis-

tribution of non-randomized inputs encountered during training.

To mitigate this issue, we follow standard practice in randomized

smoothing and train the base detector on randomized inputs [43].

In other words, when iterating over batches of files during training,

we apply the deletion randomization scheme to the files before

passing them to the base detector, ensuring that the randomization

varies each time a file is encountered. We ensure the 𝑝del parameter

for the deletion randomization scheme is set to the same value

during training and testing. Note that our certifications are sound

irrespective of how the base model is trained—the present training

process aims to improve utility.

Algorithm 1: Probabilistic certification for RS-Del

input : input file x̄, base detector 𝑓
b
, deletion

randomization scheme 𝜙 with probability 𝑝del,

decision threshold 𝜂1, significance level 𝛼 ,

number of samples used for prediction 𝑛
pred

and

lower bound 𝑛
bound

, edit ops 𝑂

output :prediction and certified radius

1 Compute 𝜇𝑦 using Eq. (14) and 𝑛
pred

randomized inputs

2 Estimate prediction 𝑦 ← arg max𝑦∈{0,1} 𝜇𝑦 − 𝜂𝑦
3 Compute 𝜇 �̂� using Eq. (15) and 𝑛

bound
randomized inputs

4 Compute certified radius 𝑟 using Table 1

5 if 𝜇 �̂� ≥ 𝜂�̂� then return prediction 𝑦, radius 𝑟
6 else return ABSTAIN

3.3.3 Exploiting semantics from disassembly. Though the most ele-

mentary representation of an executable is as a sequence of bytes, it

ignores the semantics of the program. If decompiling an executable

is feasible, we can associate bytes with their corresponding ma-

chine instructions, data, or other structures. By exploiting such

information, we can group bytes corresponding to an instruction,

and regard them as a single token in the input sequence. This

grouping of bytes extends to our definition of the edit distance

threat model (we consider edits at the token level) and to our dele-

tion randomization scheme (we delete at the token-level). There

are a few advantages to this approach: Deletion at the token-level

fully preserves the instruction semantics and improves the base

detector’s performance. We also obtained a tighter threat model

by eliminating inputs containing invalid instructions. As a result,

an instruction-level certificate covers a larger set of possible adver-

sarial examples than a byte-level certificate of the same radius. An

illustration of this concept can be found in Figure 1.

4 EVALUATION
We now empirically evaluate our proposed method RS-Del on two

malware datasets to address the remaining research questions. To

answer Q2 on tradeoffs between malware detection accuracy and

robustness guarantees, we vary the aggressiveness of smoothing,

and provide comparisons with a non-smoothed baseline and an

alternative randomized smoothingmethod [46] that applies to a con-

strained version of our threat model. Towards Q3 on the practical

robustness of RS-Del, Section 4.3 reports success rates of five pub-

lished evasion attacks against RS-Del and a non-smoothed baseline.

Computational efficiency and training convergence are reported in

Appendix D.

4.1 Experimental setup
We next detail the experimental setup, including data sources, ma-

chine learning models for malware detection, and parameters for

randomized smoothing and certification.

4.1.1 Datasets. Though our methods are compatible with exe-

cutable files of any format, in our experiments we focus on the

Portable Executable (PE) format [53], since datasets, malware detec-

tion models and adversarial attacks are more extensively available.

Moreover, PE format is the standard for executables, object files and

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Certified Robustness of Learning-based Static Malware Detectors CCS ’23, Month 01–05, 2023, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Original input file
File offset Byte rep. Disassembly rep.

00000000 77 NI

00000001 90 NI

00000002 144 NI
...

...
...

00000400 85 push ebp

00000401 139
mov ebp, esp

00000402 236

00000403 131
00000404 236
00000405 92

sub esp, 5Ch

...
...

...

Byte-level deletion
File offset Byte rep.

00000000 77
00000002 144
...

...
00000400 85
00000403 131
00000404 236
...

...

Instruction-level deletion
File offset Disassembly rep.

00000001 NI
...

...

00000400 push ebp

00000401
mov ebp, esp

00000402
...

...

Figure 1: Illustration of byte-level and instruction-level threat models. RS-Del (Section 3.3.1) is approximated by aggregating
predictions of the base detector on byte-level (middle) or instruction-level (right) randomized inputs. Left: An executable
file prior to input randomization. The byte array representation is shown in the 2nd column and partial output from the
disassembler (Ghidra [56]) is shown in the 3rd column. Bytes that do not correspond to machine instructions are marked
NI. Shading represents bytes (light gray) or instructions (dark gray) that are deleted in the randomized inputs to the right.
Middle: A sample randomized input under the byte-level threat model, where semantic information from the disassembler
is ignored. This may result in individual instructions being partially deleted. Right: A sample randomized input under the
instruction-level threat model, where bytes corresponding to an instruction (or non-instruction NI) are treated as a single unit.

shared libraries in Microsoft Windows and is an attractive target for

malware authors. We use two PE datasets which are summarized

in Table 2 and described below.

Sleipnir2. This dataset attempts to replicate data used in past

work [2], which was not published with raw samples. We recon-

structed the raw malicious samples by retrieving them from

VirusShare [84] using the provided hashes. Since we were unable

to reconstruct the raw benign samples, we followed established

protocols [41, 42, 72] to collect new benign samples. Specifically,

we set up a Windows 7 virtual machine with over 300 packages in-

stalled using Chocolatey package manager [75]. We then extracted

PE files from the virtual machine, which were assumed benign
2
,

and subsampled them to match the number of malicious samples.

The dataset is randomly split into training, validation and test sets

with a ratio of 60%, 20% and 20% respectively.

VTFeed. This dataset was first used in recent attacks on end-

to-end ML-based malware detectors [52]. It was collected from

VirusTotal—a commercial threat intelligence service—by sampling

PE files from the live feed over a period of two weeks in 2020. La-

bels for the files were derived from the 68 antivirus (AV) products

aggregated on VirusTotal at the time of collection. Files were la-

beled malicious if they were flagged malicious by 40 or more of

the AV products, they were labeled benign if they were not flagged

malicious by any of the AV products, and any remaining files were

excluded. Following Lucas et al. [52], the dataset is randomly split

into training, validation and test sets with a ratio of 80%, 10%, and

10% respectively.

We note that VTFeed came with strict terms of use, which pre-

vented us from loading it on our high performance computing

2
Chocolatey packages are validated against VirusTotal [14].

Table 2: Summary of datasets.

Number of samples

Dataset Label Train Validation Test

Sleipnir2
Benign 20 948 7 012 6 999

Malicious 20 768 6 892 6 905

VTFeed
Benign 111 258 13 961 13 926

Malicious 111 395 13 870 13 906

(HPC) cluster. As a result, we use Sleipnir2 for comprehensive ex-

periments (e.g., varying 𝑝del) on the HPC cluster, and VTFeed for a

smaller selection of experiments run on a local server.

4.1.2 Malware detectors. We experiment with static malware de-

tectors based on a neural network model called MalConv [64]. Mal-

Conv was one of the first end-to-end models proposed for malware

detection—i.e., it learns to classify directly from raw byte sequences,

rather than relying on manually engineered features. Architec-

turally, it composes a learnable embedding layer with a shallow

convolutional network. A large window size and stride of 500 bytes

are employed to facilitate scaling to long byte sequences. Though

MalConv is compatible with arbitrarily long byte sequences in prin-

ciple, we truncate all inputs to 2MB to support training efficiency.

We use the original parameter settings and training procedure [64],

except where specified in Appendix E.

Using MalConv as a basis, we consider three malware detectors

as described below.

NS. This detector corresponds to a non-smoothed (NS) MalConv

model. It serves as a non-certified, non-robust baseline—i.e., no

specific techniques are employed to improve robustness to evasion

attacks and certification is not supported.

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

CCS ’23, Month 01–05, 2023, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

RS-Abn. This detector implements randomized smoothing using

MalConv as a base detector, with an ablation randomization scheme

proposed by Levine and Feizi [46]. It serves as a certified robust

baseline, albeit for a more restricted threat model than the one we

propose in Section 2.2. Specifically, it supports robustness certifica-

tion for the Hamming distance threat model, where an attacker’s

capability is measured by the number of substituted bytes. Since

Levine and Feizi’s formulationwas for images, several modifications

are required to support malware detection. We adapt the encoding

of ablated (masked) values by introducing a special mask token; we

add support for variable-length inputs by ablating a fraction 𝑝ab
of the input values rather than a constant number; and we apply

gradient clipping when learning parameters in the embedding layer

to improve convergence (see Appendix D). We consider variants of

this detector for different values of the ablation probability 𝑝ab.

RS-Del. This is our proposed detector: it implements randomized

smoothing using MalConv as a base detector, with our proposed

deletion randomization scheme. It supports robustness certification

for the generalized edit distance threat model. We consider variants

of this detector for different values of the deletion probability 𝑝del
and the detection threshold 𝜂1.

4.1.3 Controlling false positive rates. Malware detectors are typi-

cally tuned to have a low false positive rate (FPR) (e.g., less than

0.1–1%) since producing too many false alarms is a nuisance to

users.
3
To make all detectors comparable, we report results by cali-

brating the FPR to be 0.5% on the test set for Section 4.2 and 0.5% on

the validation set for Section 4.3 unless otherwise noted. This tun-

ing is done by adjusting the decision threshold on the probability at

which the base detector (MalConv) predicts a file to be malicious.

4.2 Accuracy and Certification of RS-Del
In this section, we address research question Q2 by evaluating the

robustness guarantees and malware detection accuracy of RS-Del.
We consider two instantiations of the edit distance threat model.

First, in Section 4.2.1, we consider the Levenshtein distance threat

model, where the attacker’s elementary edits are unconstrained and

may include deletions, insertions and substitutions. Then, in Sec-

tion 4.2.2, we consider the more restricted Hamming distance threat

model, where an attacker is only able to perform substitutions. We

summarize our findings in Section 4.2.3. Overall, we find RS-Del
generates robust predictions with minimal impact on model accu-

racy for the Levenshtein distance threat model, and outperforms

RS-Abn [46] for the Hamming distance threat model.

We report the following quantities in our evaluation:

• Certified radius (CR). The radius of the largest edit distance
robustness certificate (see Definition 2.2) that can be issued

for a given input file, malware detector and certification

method. Note that this is a conservative measure of robust-

ness since it is tied to the certification method. The median
CR is computed on the test set.

• Certified accuracy [17, 43], also known as verified-robust
accuracy [45, 90], evaluates robustness certificates and accu-
racy simultaneously with respect to a test set. It is defined

3
https://www.av-comparatives.org/testmethod/false-alarm-tests/

as the fraction of files in the test set D for which the mal-

ware detector 𝑓 ’s prediction is correct and certified robust

at radius 𝑟 :

CertAcc𝑟 (D) =
∑︁
(x,𝑦) ∈D

1𝑓 (x)=𝑦1CR(x)≥𝑟
|D| (16)

where CR(x) denotes the certified radius for input x re-

turned by the certification method.

• Clean accuracy. The fraction of files in the test set for which

the malware detector’s prediction is correct.

We briefly mention default parameter settings for experiments in

this section. When approximating the smoothed malware detectors

(RS-Del and RS-Abn) we sample𝑛
pred

= 1000 randomized inputs for

prediction and 𝑛
bound

= 4000 randomized inputs for certification,

while setting the significance level 𝛼 to 0.05. Unless otherwise

specified, we set the decision thresholds for the smoothed detectors

so that 𝜂0 = 𝜂1 = 0.5. The decision thresholds for the base detectors

are tuned to yield a false positive rate of 0.5%.We note that the entire

test set is used when reporting metrics and summary statistics in

this section.

4.2.1 Levenshtein distance threat model. We first present results

for the Levenshtein distance threat model, where the attacker’s

elementary edits are unconstrained (𝑂 = {del, ins, sub}). We vary

three parameters associated with RS-Del: the deletion probabil-

ity 𝑝del, the decision threshold of the smoothed detector 𝜂1, and

the elementary token (bytes versus instructions). We use NS as

a baseline as there are no prior certified defenses for this threat

model to our knowledge.

Certified accuracy. Figure 2 plots the certified accuracy of RS-Del
as a function of the radius 𝑟 on the Sleipnir2 dataset for several

values of 𝑝del using byte-level Levenshtein distance. The corre-

sponding plot for instruction-level Levenshtein distance exhibits

similar behavior, and is presented in Figure 4 of Appendix C. We

observe that the curves for larger values of 𝑝del approximately dom-

inate the curves for smaller values of 𝑝del, for 𝑝del ≤ 99.5% (i.e.,

the accuracy is higher or close for all radii). This suggests that the

robustness of RS-Del can be improved without sacrificing accu-

racy by increasing 𝑝del up to 99.5%. However, for the larger value

𝑝del = 99.9%, we observe a drop in certified accuracy of around 10%

for smaller radii and an increase for larger radii.

It is interesting to relate these certification results to published

evasion attacks. Figure 2 shows that we can achieve a certified

accuracy in excess of 90% at a Levenshtein distance radius of 128

bytes when 𝑝del = 99.5%. This radius is larger than the median

Levenshtein distance of two attacks that manipulate headers of PE

files [20, 57] (see Table 4). We can therefore provide reasonable

robustness guarantees against these two attacks. However, a radius

of 128 bytes is orders of magnitude smaller than the median Leven-

shtein distances of other published attacks which range from tens

of KB [42, 52] to several MB [21] (see Table 4). While some of these

attacks arguably fall outside an edit distance constrained threat

model, we consider them in our empirical evaluation of robustness

in Section 4.3.

Clean accuracy and abstention rates. We report clean accuracy

and abstention rates in Table 7 of Appendix C, and summarize

8

https://www.av-comparatives.org/testmethod/false-alarm-tests/


929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Certified Robustness of Learning-based Static Malware Detectors CCS ’23, Month 01–05, 2023, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

0 100 200 300 400 500 600 700

Radius, r

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
er

ti
fi

ed
a

cc
u

ra
cy

pdel

97%

99%

99.5%

99.9%

Figure 2: Certified accuracy for RS-Del as a function of the
certificate radius (horizontal axis) and byte deletion proba-
bility 𝑝del (colored line styles). The results are plotted for the
Sleipnir2 test set under the byte-level Levenshtein distance
threat model (with 𝑂 = {del, ins, sub}). The grey vertical lines
represent the best achievable certified radius for RS-Del (set-
ting 𝜇𝑦 = 1 in the expressions in Table 1). It is apparent that
𝑝del controls a robustness/accuracy tradeoff. Note that in this
setting, a non-smoothed, non-certified detector (NS) achieves
a clean accuracy of 98%.

trends here. For the Sleipnir2 dataset, we find that clean accuracy is

relatively constant for 𝑝del in the range 90-99.5%, but drops by more

than 10% at 𝑝del = 99.9%. This is in line with the trends observed

for certified accuracy. We note that the clean accuracy of RS-Del
(excluding 𝑝del = 99.9%) is at most 3% lower than the NS baseline

for Sleipnir2 and at most 7% lower than the NS baseline for VTFeed.

Accuracy under high deletion. It may be surprising that RS-Del
can maintain high accuracy even when deletion is aggressive. We

offer some possible explanations. First, we note that even with a

high deletion probability of 𝑝del = 99.9%, the smoothed detector

accesses almost all of the file in expectation, as it aggregates 𝑛
pred

=

1000 predictions from the base detector each of which accesses

a random 0.1% of the file in expectation. Second, we posit that

malware detection may be “easy” for RS-Del on these datasets. This

could be due to the presence of signals that are robust to deletion

(e.g., file size or byte frequencies) or redundancy of signals (i.e., if a

signal is deleted in one place it may be seen elsewhere).

Decision threshold. Table 3 provides error rates and robustness

metrics for several values of the decision threshold 𝜂1, using byte-

level Levenshtein distance with 𝑝del = 99.5% (see Appendix C for

plots of the certified true positive and true negative rates). When

varying 𝜂1, we also vary the decision threshold of the base detector

to achieve a target false positive rate (FPR) of 0.5%. Looking at

the table, we see that 𝜂1 has minimal impact on the false negative

rate (FNR), which is stable around 7%. However, there is a signifi-

cant impact on the median CR (and theoretical upper bound), as

reported separately for each class. The median CR is balanced for

both the malicious and benign class when 𝜂1 = 50%, but favours

Table 3: Impact of the smoothed decision threshold𝜂1 on false
negative error rate (FNR) and median certified radius (CR)
for malicious and benign files. The false positive rate (FPR) is
set to a target value of 0.5% by varying the decision threshold
of the base classifier. The results are reported for Sleipnir2
with 𝑝del = 99.5% using byte-level Levenshtein distance. “UB”
refers to an upper bound on the median CR for a best case
smoothed detector (based on Table 1 with 𝜇𝑦 = 1).

Median CR (UB)

𝜂1 (%) FNR (%) FPR (%) Malicious Benign

50 6.8 0.5 137 (138) 137 (138)
25 6.9 0.5 275 (276) 57 (57)
10 6.8 0.5 455 (459) 20 (21)
5 6.6 0.5 578 (597) 10 (10)
1 7.1 0.5 582 (918) 1 (2)
0.5 6.9 0.5 506 (1057) 0 (0)

the malicious class as 𝜂1 is decreased. For instance when 𝜂1 = 5% a

significantly larger median CR is possible for malicious files (137

to 578) at the expense of the median CR for benign files (137 to

10). This asymmetry in the class-specific CR is a feature of the

theory—that is, in addition to controlling a tradeoff between error

rates of each class, 𝜂1 also controls a tradeoff between the CR for

each class (see Table 1).

4.2.2 Hamming distance threat model. We now turn to the more

restricted Hamming distance threat model, where the attacker is

limited to performing substitutions only (𝑂 = {sub}). We choose

to evaluate this threat model as it is covered in previous work on

randomized smoothing, called randomized ablation [46] (abbrevi-

ated RS-Abn), and can serve as a baseline for comparison with our

method. Recall that we adapt RS-Abn to malware detection by in-

troducing a parameter called 𝑝ab, which is the fraction of bytes that

are “ablated” (replaced by a special masked value) (see Section 4.1.2).

This parameter is analogous to 𝑝del in RS-Del, except that the num-

ber of ablated bytes is deterministic in RS-Abn, whereas the number

of deleted bytes is random in RS-Del. We compare RS-Del and RS-
Abn for varying values of 𝑝del and 𝑝ab using the Sleipnir2 dataset
and byte-level Hamming distance.

Certified accuracy. Figure 3 plots the certified accuracy of RS-
Del and RS-Abn for three values of 𝑝del and 𝑝ab. We observe that

the certified accuracy is uniformly larger for our proposed method

RS-Del than for RS-Abn when 𝑝del = 𝑝ab. The superior certifica-

tion performance of RS-Del is somewhat surprising given it is not

optimized for the Hamming distance threat model. One possible

explanation relates to the learning difficulty of RS-Abn compared

with RS-Del. Specifically, we find that stochastic gradient descent

is slower to converge for RS-Abn despite our attempts to improve

convergence (see Appendix D).

Recall, that RS-Del provides certificates for any of the threat

models in Table 1—in addition to the Hamming distance certificate—

without needing to modify the randomization scheme.

Tightness. RS-Abn is provably tight, in the sense that it is not

possible to issue a larger Hamming distance certificate unless more

9



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

CCS ’23, Month 01–05, 2023, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

0 25 50 75 100 125 150

Radius, r

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
er

ti
fi

ed
a

cc
u

ra
cy

Detector,parameters

RS-Del,pdel = 97%

RS-Del,pdel = 99%

RS-Del,pdel = 99.5%

RS-Abn,pab = 97%

RS-Abn,pab = 99%

RS-Abn,pab = 99.5%

Figure 3: Certified accuracy comparison for RS-Del (our
method) and RS-Abn [46] under the Hamming distance
threat model for the Sleipnir2 dataset. Note that our method
is not optimized for the Hamming distance threat model.

information is made available to the certification mechanism or the

ablation randomization scheme is changed. This tightness result

for RS-Abn, together with the empirical results in Figure 3, indicate

that RS-Del produces certificates which are tight or close to tight

in practice, at least for the Hamming distance threat model. This is

an interesting observation, since it is unclear how to derive a tight,

computationally tractable certificate for RS-Del.

4.2.3 Summary. Our evaluation shows that RS-Del provides non-
trivial robustness guarantees with a low impact on accuracy. The

certified radii we observe are close to the best radii theoretically

achievable using our mechanism. For the Levenshtein byte-level

edit distance threat model, we obtain radii of a few hundred bytes in

size, which can certifiably defend against attacks that edit headers

of PE files [20, 22, 57]. However, certifying robustness against more

powerful attacks that modify thousands or millions of bytes remains

an open challenge. By varying the detection threshold, we show

that certification can be performed asymmetrically for benign and

malicious files. This can boost the certified radii of malicious files

by a factor of 4 in some cases. While there are no prior methods

to use as baselines for the Levenshtein distance threat model, our

comparisons with RS-Abn [46] for the Hamming distance threat

model show that RS-Del outperforms RS-Abn in terms of both

accuracy and robustness.

4.3 Empirical robustness to attacks
In this section, we address research question Q3 by empirically

evaluating the robustness of RS-Del to several published evasion

attacks. By doing so, we aim to provide a more complete picture of

robustness, as our certificates are conservative and may underes-
timate robustness to real attacks, which are subject to additional

constraints (e.g., maintaining executability, preserving a malicious

payload, etc.). We introduce the attacks in Section 4.3.1, provide

details of the experimental setup in Section 4.3.2 and discuss the

results in Section 4.3.3.

4.3.1 Attacks. We consider five recently published attacks designed

for evading static PE malware detectors as summarized in Table 4.

The attacks cover a variety of edit distance magnitudes from tens

of bytes to millions of bytes. While attacks that edit millions of

bytes arguably fall outside of our edit distance-constrained threat

model, we include one such attack (GAMMA) to test the limits of

our methodology. We note that four of the five attacks are able to

operate in a black-box setting and can therefore be applied directly

to RS-Del. However most of the white-box attacks, including Slack,
are designed to attack neural network-base detectors with an initial

embedding layer. It is not obvious how to apply these attacks to

RS-Del, as the deletion sampling deviates from the assumed archi-

tecture, and makes computing gradients difficult. As an alternative,

we therefore transfer the white-box Slack attack from NS to RS-Del.

4.3.2 Experimental setup. Since some of the attacks take hours to

run per file, we use smaller evaluation sets containing malware

subsampled from the test sets in Table 2. The evaluation set for

Sleipnir2 consists of 500 files, and the one for VTFeed consists

of 100 files (matching [52]). We note that our evaluation sets are

comparable in size to prior work [40, 42, 77]. For each evaluation set,

we report attack success rates against malware detectors trained

on the same dataset.

Since all attacks employ greedy optimizationwith randomization,

they may fail on some runs, but succeed on others. We therefore

repeat each attack 5 times per file and use the best performing

attacked file in our evaluation. We define the attack success rate as

the proportion of files initially detected as malicious for which at

least one of the 5 attack repeats is successful at evading detection.

Lower attack success rates correlate with improved robustness

against attacks. We permit all attacks to run for up to 200 attack

iterations of the internal optimizer. Early stopping is enabled for

those attacks that support it (Disp, Slack, GAMMA), which means

the attack terminates as soon as the malware detector’s prediction

flips from malicious to benign.

Where possible, we run direct attacks against RS-Del and com-

pare success rates againstNS as a baseline.We also consider transfer
attacks from NS to RS-Del as an important variation to the threat

model, where an attacker has limited access to the target RS-Del
during attack optimization. When running direct attacks against

RS-Del, we use a reduced number of samples (𝑛
pred

= 100) to make

the computational cost of the attacks more manageable. For both

direct and transfer attacks against RS-Del, we set 𝑝del = 97% and

use bytes as the elementary tokens for smoothing.

4.3.3 Results. Table 5 presents results for transfer attacks from

NS to RS-Del. The results for direct attacks against RS-Del are
presented in Table 6. Almost all of the attacks transfer poorly to

RS-Del. In most cases the attack success rates drop to zero or single

digit percentages. This may be evidence of increased robustness,

towards Q3. Among the attacks, GAMMA is an exception: included

to test the limits of RS-Del, GAMMA produces attacks with edit

distances several orders of magnitude greater than the certifications.

10



1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Certified Robustness of Learning-based Static Malware Detectors CCS ’23, Month 01–05, 2023, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table 4: Evasion attacks used in our evaluation. The attack distance refers to the median Levenshtein distance computed
on a set of 500 attacked files from the Sleipnir2 test set. We use a closed source implementation of Disp and open source
implementations of the remaining attacks based on secml-malware [19].

Attack

Supported

settings

Attack

distance

Optimizer Description

Disp [52]

White-box,

black-box

17.2 KB Gradient-guided

Disassembles the PE file and displaces chunks of code to a new section,

replacing the original code with semantic nops.

Slack [42] White-box 34.7 KB

Fast Gradient Sign

Method [30]

Replaces non-functional bytes in slack regions or the overlay of the PE

file with adversarially-crafted noise.

HDOS [20]

White-box,

black-box

17.0 B Genetic algorithm

Manipulates bytes in the DOS header of the PE file which are not used

in modern Windows.

HField [57]

White-box,

black-box

58.0 B Genetic algorithm

Manipulates fields in the header of the PE file (debug information,

section names, checksum, etc.) which do not impact functionality.

GAMMA [21] Black-box 2.10 MB Genetic algorithm

Appends sections extracted from benign files to the end of a malicious

PE file and modifies the header accordingly.

Table 5: Success rates of attacks transferred from NS to RS-
Del in white- and black-box settings.

Success rate (%)

Setting Attack Dataset NS RS-Del

White-box

Disp [52]

Sleipnir2 73.8 0.414

VTFeed 94.1 0.0

Slack [42]

Sleipnir2 57.9 2.90

VTFeed 96.0 1.01

Black-box

HDOS [20]

Sleipnir2 0.0 0.0

VTFeed 0.0 0.0

HField [57]

Sleipnir2 0.607 0.0

VTFeed 0.990 0.0

Disp [52]

Sleipnir2 0.607 0.0

VTFeed 10.9 0.0

GAMMA [21]

Sleipnir2 99.2 99.6

VTFeed 76.2 100.0

We hypothesize that GAMMA adds so much benign content that

it overwhelms the malicious signal—enough to cross the decision

boundary—akin to a good word attack [51]. We find thatHDOS and
HField are ineffective for both RS-Del and the baseline NS. Both
attacks change up to 58 bytes in the header, and tend to fall within

our certifications.

5 RELATEDWORK
Since Goodfellow et al. [30] reported the vulnerability of neural

networks to adversarial examples, numerous mitigations have been

proposed, with most aiming for best response against a particular

attack [85]. By contrast, certified robustness aims to guarantee a

model’s output does not change under adversarial perturbations.

The literature predominantly considers norm-bounded perturba-
tions in computer vision under ℓ𝑝 norms. Deterministic approaches
to certification [24, 31, 45, 55, 66, 81, 88, 88, 89, 94] achieve this

Table 6: Success rates of direct black-box attacks against RS-
Del and the NS baseline.

Success rate (%)

Attack Dataset NS RS-Del

HDOS [20]

Sleipnir2 0.0 0.0

VTFeed 0.0 0.0

HField [57]

Sleipnir2 0.607 0.0

VTFeed 0.990 0.0

Disp [52]

Sleipnir2 0.809 0.0

VTFeed 10.9 0.0

GAMMA [21]

Sleipnir2 99.2 54.1

VTFeed 76.2 100.0

objective by computing outer bounds on a model’s possible out-

puts under perturbation. Such approaches apply to specific net-

work architectures, by employing convex relaxation or exploiting

piecewise-linear structures, limiting their adaptation to generic base

models and new domains. As an alternative, randomized smoothing
[17, 43, 44, 46] provides high-probability guarantees with flexible

certification mechanisms. Randomized smoothing is agnostic to

the inner workings of the model, and only uses API access to in-

ference: randomness is introduced to model inputs, followed by

aggregation of corresponding predictions. In this paper we adapt

randomized smoothing to malware detection. Section 3 develops a

novel smoothing mechanism based on random deletions, and offers

practical recommendations on tractable Monte Carlo approxima-

tion, effective model training, and improved performance through

operating at the level of instructions.

Despite the rich body of research and useful abstraction, gen-

eral ℓ𝑝 -norm-bounded threat models are inadequate for many prob-

lems including perturbations to executable files considered in this

work. Even in computer vision, ℓ𝑝 -norm bounded defenses can

be circumvented by image translation, rotation, blur, and other

human-imperceptible transformations that induce extremely large

11



1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

CCS ’23, Month 01–05, 2023, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

ℓ𝑝 distances. One technique to address this issue is to re-parametrize

the norm-bounded distance in terms of image transformation pa-

rameters [28, 32, 48]. In other words, instead of certifying instances

to be robust against ℓ𝑝 perturbations, one may consider ℓ𝑝 distance

in terms of transformation parameters. Natural language, on the

other hand, faces a different issue: while the general ℓ𝑝 threat model

covers adversarial word substitution [67], it is too broad and covers

many actual (non-adversarial) examples as well. For example, “He

loves cat” and “He hates cat” are both 1 word Hamming distance

away from “He likes cat”, but are semantically different. A certificate

of radius 1 will force a wrong prediction for at least one neighbor.

To address this, Jia et al. [37] and Ye et al. [92] constrain the threat

model to synonyms only.

Similar to natural language, adversarial examples encountered

in malware are constrained by the semantics of the platform and

instruction specifications. However, in this paper we go beyond the

word substitution threat model of previous work [67], as considera-

tion of insertions and deletions is necessary in malware detection.

Such edits are not captured by the ℓ𝑝 threat model: there is no

fixed file size, and even when edits are size-preserving, a few edits

may lead to large ℓ𝑝 distances. Arguably, our edit distance threat

model and RS-Delmechanism are of independent interest to natural

language also.

Several empirical defense methods have been proposed to im-

prove robustness of ML classifiers [23, 63]. Íncer Romeo et al. [36]

compose manually crafted Boolean features with a classifier that

is constrained to be monotonically increasing with respect to se-

lected inputs. This approach permits a combination of (potentially

vulnerable) learned behavior with domain knowledge, and thereby

aims to mitigate adversarial examples. Demontis et al. [23] show

that the sensitivity of linear support vector machines to adversarial

perturbations can be reduced by training with ℓ∞ regularization

of weights. In another work, Quiring et al. [63] take advantage of

heuristic-based semantic gap detectors and an ensemble of feature

classifiers to improve empirical robustness. Compared to our work

on certified adversarial defenses, these approaches do not provide

formal guarantees.

Binary normalization [9, 15, 61, 87] was originally proposed to

defend against polymorphic/metamorphic malware, and can also

be seen as a mitigation to certain adversarial examples. It attempts

to sanitize binary obfuscation techniques by mapping malware to

a canonical form before running a detection algorithm. However,

binary normalization cannot fully mitigate attacks like Disp (see

Table 4), as deducing opaque and evasive predicates are NP-hard

problems [52].

Dynamic analysis can provide additional insights for malware

detection. In particular, it can record a program’s behavior while

executing it in a sandbox (e.g., collecting a call graph or network

traffic) [38, 62, 68, 93, 95]. Though detectors built on top of dynamic

analysis can be more difficult to evade, as the attacker needs to

obfuscate the program’s behavior, they are still susceptible to adver-

sarial perturbations. For example, an attacker may insert API calls

to obfuscate a malware’s behavior [27, 34, 69, 70]. Applying RS-Del
to certify detectors that operate on call sequences [95] or more

general dynamic features would be an interesting future direction.

6 CONCLUSION
In this paper we study certified robustness of machine learned

malware detectors. There has been relatively little research on

certification outside the computer vision domain, where threats are

modeled as ℓ𝑝 -norm bounded perturbations. By contrast, malware

detection is a highly adversarial setting where evasion is the rule

not the exception and where the action space does not preserve

length—ruling out the ℓ𝑝 -norm altogether. We organize our study

across three research questions Q1–Q3.
We address Q1 on the feasibility of certified robustness for mal-

ware detection, by identifying an appropriate edit distance threat

model and designing a randomized smoothing-based certification

mechanism. Our threat model covers adversaries that can make

substitution, deletion or insertion perturbations, and is likely of

independent interest beyond the malware domain. Our novel ran-

domized smoothingmechanism called RS-Del, can produce certified
guarantees within this threat model (and several variations) using

only API access to the malware detector.

We respond to Q2 on the size of certified guarantees and costs to

accuracy by carefully evaluating RS-Del on two malware datasets

using a recent static deep malware detector [64]. Besides providing

certified radii that are close to the best achievable using our theoret-

ical analysis, we find that RS-Del can certify a radius as large as 128

bytes (in Levenshtein distance) without significant loss in detection

accuracy. A certificate of this size covers in excess of 10
606

files in

the proximity of a 10KB input file.

In recognition that certifications are necessarily conservative, for

Q3 we examine RS-Del in the presence of five recently published

attacks. We find that while empirical robustness is not absolute,

it does extend beyond the certified radius, when attacks are of a

modest size, i.e., where the edit distance threat model is appropriate.

Our results suggest a number of directions for future work. It

would be interesting to adapt RS-Del to malware detectors with

dynamic analysis, e.g., using recorded call sequences [95]. Where

certifications may naturally define regions in feature space [28,

32, 48], it would be most helpful to relate guarantees to natural

actions of an attacker. Operationalizing certifications has so far

eluded systems in computer vision, but may be more forthcoming

in malware detection where both automation and human analysts

are prevalent. Finally, certifying robustness against attacks that

modify thousands or millions of bytes remains an open challenge.

REFERENCES
[1] Hojjat Aghakhani, Fabio Gritti, Francesco Mecca, Martina Lindorfer, Stefano

Ortolani, Davide Balzarotti, Giovanni Vigna, and Christopher Kruegel. 2020.

When Malware is Packin’ Heat; Limits of Machine Learning Classifiers Based on

Static Analysis Features. In Proceedings of Symposium on Network and Distributed
System Security (NDSS). The Internet Society. https://doi.org/10.14722/ndss.2020.

24310

[2] Abdullah Al-Dujaili, Alex Huang, Erik Hemberg, and Una-May O’Reilly. 2018.

Adversarial Deep Learning for Robust Detection of Binary Encoded Malware. In

2018 IEEE Security and Privacy Workshops (S&PW). IEEE, 76–82. https://doi.org/

10.1109/SPW.2018.00020

[3] Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani Sri-

vastava, and Kai-Wei Chang. 2018. Generating Natural Language Adversarial

Examples. In Proceedings of the 2018 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP). Association for Computational Linguistics,

2890–2896. https://doi.org/10.18653/v1/D18-1316

[4] Anish Athalye, Nicholas Carlini, and David Wagner. 2018. Obfuscated Gra-

dients Give a False Sense of Security: Circumventing Defenses to Adversar-

ial Examples. In Proceedings of the 35th International Conference on Machine

12

https://doi.org/10.14722/ndss.2020.24310
https://doi.org/10.14722/ndss.2020.24310
https://doi.org/10.1109/SPW.2018.00020
https://doi.org/10.1109/SPW.2018.00020
https://doi.org/10.18653/v1/D18-1316


1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Certified Robustness of Learning-based Static Malware Detectors CCS ’23, Month 01–05, 2023, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Learning (Proceedings of Machine Learning Research, Vol. 80). PMLR, 274–283.

https://proceedings.mlr.press/v80/athalye18a.html

[5] Avast Software. [n. d.]. Malware detection and blocking. Retrieved 2022-

12-22 from https://www.avast.com/en-us/technology/malware-detection-and-

blocking

[6] Marco Barreno, BlaineNelson, Russell Sears, AnthonyD Joseph, and J Doug Tygar.

2006. Canmachine learning be secure?. In Proceedings of the 2006 ACMSymposium
on Information, Computer and Communications Security (AsiaCCS). Association
for Computing Machinery, 16–25. https://doi.org/10.1145/1128817.1128824

[7] Blackberry Limited. 2022. Cylance AI from Blackberry. Retrieved 2022-11-25

from https://www.blackberry.com/us/en/products/cylance-endpoint-security/

cylance-ai

[8] Broadcom. 2022. How does Symantec Endpoint Protection use advanced machine

learning? Retrieved 2022-12-22 from https://techdocs.broadcom.com/us/en/

symantec-security-software/endpoint-security-and-management/endpoint-

protection/all/Using-policies-to-manage-security/preventing-and-handling-

virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-

machine-learning-v120625733-d47e275.html

[9] Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga. 2007. Code Normal-

ization for Self-Mutating Malware. IEEE Security & Privacy 5, 2 (2007), 46–54.

https://doi.org/10.1109/MSP.2007.31

[10] Xiaoyu Cao and Neil Zhenqiang Gong. 2017. Mitigating Evasion Attacks to

Deep Neural Networks via Region-Based Classification. In Proceedings of the
33rd Annual Computer Security Applications Conference (ACSAC). Association for

Computing Machinery, New York, NY, USA, 278–287. https://doi.org/10.1145/

3134600.3134606

[11] Nicholas Carlini, Florian Tramer, Krishnamurthy, Dvijotham, and J. Zico Kolter.

2022. (Certified!!) Adversarial Robustness for Free! https://doi.org/10.48550/

ARXIV.2206.10550

[12] Nicholas Carlini and David Wagner. 2016. Defensive Distillation is Not Robust

to Adversarial Examples. https://doi.org/10.48550/ARXIV.1607.04311

[13] Panagiotis Charalampopoulos, Solon P. Pissis, Jakub Radoszewski, Tomasz

Waleń, and Wiktor Zuba. 2020. Unary Words Have the Smallest Levenshtein

k-Neighbourhoods. In 31st Annual Symposium on Combinatorial Pattern Matching
(CPM 2020) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 161).
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 10:1–

10:12. https://doi.org/10.4230/LIPIcs.CPM.2020.10

[14] Chocolatey Software. [n. d.]. Chocolately Software Docs | Security. Retrieved

2022-12-22 from https://docs.chocolatey.org/en-us/information/security

[15] Mihai Christodorescu, Johannes Kinder, Somesh Jha, Stefan Katzenbeisser, and

Helmut Veith. 2005. Malware Normalization. Technical Report TR1539. Depart-
ment of Computer Sciences, University of Wisconsin-Madison.

[16] Cisco Systems, Inc. [n. d.]. ClamAV: Creating signatures for ClamAV. Retrieved

2022-12-22 from https://docs.clamav.net/manual/Signatures.html

[17] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. 2019. Certified Adversarial Ro-

bustness via Randomized Smoothing. In Proceedings of the 36th International Con-
ference on Machine Learning (Proceedings of Machine Learning Research, Vol. 97).
PMLR, 1310–1320. https://proceedings.mlr.press/v97/cohen19c.html

[18] Gautam Das, Rudolf Fleischer, Leszek Gasieniec, Dimitris Gunopulos, and Juha

Kärkkäinen. 1997. Episodematching. InCombinatorial PatternMatching. Springer
Berlin Heidelberg, Berlin, Heidelberg, 12–27.

[19] Luca Demetrio and Battista Biggio. 2021. secml-malware: Pentesting Windows

Malware Classifiers with Adversarial EXEmples in Python. https://doi.org/10.

48550/ARXIV.2104.12848

[20] Luca Demetrio, Battista Biggio, Giovanni Lagorio, Fabio Roli, and Alessandro

Armando. 2019. Explaining Vulnerabilities of Deep Learning to Adversarial

Malware Binaries. https://doi.org/10.48550/ARXIV.1901.03583

[21] Luca Demetrio, Battista Biggio, Giovanni Lagorio, Fabio Roli, and Alessandro

Armando. 2021. Functionality-Preserving Black-Box Optimization of Adversarial

Windows Malware. IEEE Transactions on Information Forensics and Security 16

(2021), 3469–3478. https://doi.org/10.1109/TIFS.2021.3082330

[22] Luca Demetrio, Scott E. Coull, Battista Biggio, Giovanni Lagorio, Alessandro

Armando, and Fabio Roli. 2021. Adversarial EXEmples: A Survey and Exper-

imental Evaluation of Practical Attacks on Machine Learning for Windows

Malware Detection. ACM Trans. Priv. Secur. 24, 4, Article 27 (Sept. 2021).

https://doi.org/10.1145/3473039

[23] Ambra Demontis, Marco Melis, Battista Biggio, Davide Maiorca, Daniel Arp,

Konrad Rieck, Igino Corona, Giorgio Giacinto, and Fabio Roli. 2019. Yes, Machine

Learning Can Be More Secure! A Case Study on Android Malware Detection.

IEEE Transactions on Dependable and Secure Computing 16, 4 (2019), 711–724.

https://doi.org/10.1109/TDSC.2017.2700270

[24] Krishnamurthy Dvijotham, Sven Gowal, Robert Stanforth, Relja Arandjelovic,

Brendan O’Donoghue, Jonathan Uesato, and Pushmeet Kohli. 2018. Training

verified learners with learned verifiers. https://doi.org/10.48550/ARXIV.1805.

10265

[25] Krishnamurthy (Dj) Dvijotham, Jamie Hayes, Borja Balle, Zico Kolter, Chongli

Qin, András György, Kai Xiao, Sven Gowal, and Pushmeet Kohli. 2020. A Frame-

work for Robustness Certification of Smoothed Classifiers using f-Divergences. In

8th International Conference on Learning Representations (ICLR). OpenReview.net.
https://openreview.net/forum?id=SJlKrkSFPH

[26] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei

Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. 2018. Robust Physical-

World Attacks on Deep Learning Visual Classification. In 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR). IEEE, 1625–1634.
https://doi.org/10.1109/CVPR.2018.00175

[27] Fenil Fadadu, Anand Handa, Nitesh Kumar, and Sandeep Kumar Shukla. 2020.

Evading API Call Sequence Based Malware Classifiers. In Information and Com-
munications Security. Springer, Cham, 18–33. https://doi.org/10.1007/978-3-030-

41579-2_2

[28] Marc Fischer, Maximilian Baader, and Martin Vechev. 2020. Certified Defense

to Image Transformations via Randomized Smoothing. In Advances in Neural
Information Processing Systems (NeurIPS, Vol. 33). Curran Associates, Inc., 8404–

8417.

[29] Siddhant Garg and Goutham Ramakrishnan. 2020. BAE: BERT-based Adversarial

Examples for Text Classification. In Proceedings of the 2020 Conference on Empiri-
cal Methods in Natural Language Processing (EMNLP). Association for Computa-

tional Linguistics, 6174–6181. https://doi.org/10.18653/v1/2020.emnlp-main.498

[30] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and

Harnessing Adversarial Examples. In 3rd International Conference on Learning
Representations (ICLR). http://arxiv.org/abs/1412.6572

[31] Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli

Qin, Jonathan Uesato, Relja Arandjelovic, Timothy Mann, and Pushmeet Kohli.

2018. On the Effectiveness of Interval Bound Propagation for Training Verifiably

Robust Models. https://doi.org/10.48550/ARXIV.1810.12715

[32] Zhongkai Hao, Chengyang Ying, Yinpeng Dong, Hang Su, Jian Song, and Jun

Zhu. 2022. GSmooth: Certified Robustness against Semantic Transformations via

Generalized Randomized Smoothing. In Proceedings of the 39th International Con-
ference on Machine Learning (Proceedings of Machine Learning Research, Vol. 162).
PMLR, 8465–8483. https://proceedings.mlr.press/v162/hao22c.html

[33] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song.

2021. Natural Adversarial Examples. In 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, 15262–15271. https://doi.org/10.

1109/CVPR46437.2021.01501

[34] Weiwei Hu and Ying Tan. 2018. Black-Box Attacks against RNN Based Mal-

ware Detection Algorithms. In The Workshops of the The Thirty-Second AAAI
Conference on Artificial Intelligence (AAAI Workshops). AAAI Press, 245–251.
https://aaai.org/ocs/index.php/WS/AAAIW18/paper/view/16594

[35] Ling Huang, Anthony D. Joseph, Blaine Nelson, Benjamin I.P. Rubinstein, and J. D.

Tygar. 2011. Adversarial Machine Learning. In Proceedings of the 4th ACM Work-
shop on Security and Artificial Intelligence (AISec). Association for Computing

Machinery, New York, NY, USA, 43–58. https://doi.org/10.1145/2046684.2046692

[36] Íñigo Íncer Romeo, Michael Theodorides, Sadia Afroz, and David Wagner. 2018.

Adversarially Robust Malware Detection Using Monotonic Classification. In

Proceedings of the Fourth ACM International Workshop on Security and Privacy
Analytics (IWSPA). Association for Computing Machinery, New York, NY, USA,

54–63. https://doi.org/10.1145/3180445.3180449

[37] Robin Jia, Aditi Raghunathan, Kerem Göksel, and Percy Liang. 2019. Certified Ro-

bustness to Adversarial Word Substitutions. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Association
for Computational Linguistics, 4129–4142. https://doi.org/10.18653/v1/D19-1423

[38] Haodi Jiang, Turki Turki, and Jason T. L. Wang. 2018. DLGraph: Malware Detec-

tion Using Deep Learning and Graph Embedding. In 2018 17th IEEE International
Conference on Machine Learning and Applications (ICMLA). IEEE, 1029–1033.
https://doi.org/10.1109/ICMLA.2018.00168

[39] Kaspersky Lab. 2021. Machine Learning for Malware Detection.

https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-

Whitepaper-Machine-Learning.pdf

[40] Bojan Kolosnjaji, Ambra Demontis, Battista Biggio, Davide Maiorca, Giorgio

Giacinto, Claudia Eckert, and Fabio Roli. 2018. Adversarial Malware Binaries:

Evading Deep Learning for Malware Detection in Executables. In 2018 26th
European Signal Processing Conference (EUSIPCO). IEEE, 533–537. https://doi.

org/10.23919/EUSIPCO.2018.8553214

[41] J. Zico Kolter and Marcus A. Maloof. 2006. Learning to Detect and Classify

Malicious Executables in the Wild. Journal of Machine Learning Research 7, 99

(2006), 2721–2744. http://jmlr.org/papers/v7/kolter06a.html

[42] Felix Kreuk, Assi Barak, Shir Aviv-Reuven, Moran Baruch, Benny Pinkas, and

Joseph Keshet. 2018. Deceiving End-to-End Deep Learning Malware Detectors

using Adversarial Examples. https://doi.org/10.48550/ARXIV.1802.04528

[43] Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman

Jana. 2019. Certified Robustness to Adversarial Examples with Differential

Privacy. In 2019 IEEE Symposium on Security and Privacy (S&P). IEEE, 656–672.
https://doi.org/10.1109/SP.2019.00044

[44] Guang-He Lee, Yang Yuan, Shiyu Chang, and Tommi Jaakkola. 2019. Tight

Certificates of Adversarial Robustness for Randomly Smoothed Classifiers. In

13

https://proceedings.mlr.press/v80/athalye18a.html
https://www.avast.com/en-us/technology/malware-detection-and-blocking
https://www.avast.com/en-us/technology/malware-detection-and-blocking
https://doi.org/10.1145/1128817.1128824
https://www.blackberry.com/us/en/products/cylance-endpoint-security/cylance-ai
https://www.blackberry.com/us/en/products/cylance-endpoint-security/cylance-ai
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-protection/all/Using-policies-to-manage-security/preventing-and-handling-virus-and-spyware-attacks-v40739565-d49e172/how-does-use-advanced-machine-learning-v120625733-d47e275.html
https://doi.org/10.1109/MSP.2007.31
https://doi.org/10.1145/3134600.3134606
https://doi.org/10.1145/3134600.3134606
https://doi.org/10.48550/ARXIV.2206.10550
https://doi.org/10.48550/ARXIV.2206.10550
https://doi.org/10.48550/ARXIV.1607.04311
https://doi.org/10.4230/LIPIcs.CPM.2020.10
https://docs.chocolatey.org/en-us/information/security
https://docs.clamav.net/manual/Signatures.html
https://proceedings.mlr.press/v97/cohen19c.html
https://doi.org/10.48550/ARXIV.2104.12848
https://doi.org/10.48550/ARXIV.2104.12848
https://doi.org/10.48550/ARXIV.1901.03583
https://doi.org/10.1109/TIFS.2021.3082330
https://doi.org/10.1145/3473039
https://doi.org/10.1109/TDSC.2017.2700270
https://doi.org/10.48550/ARXIV.1805.10265
https://doi.org/10.48550/ARXIV.1805.10265
https://openreview.net/forum?id=SJlKrkSFPH
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1007/978-3-030-41579-2_2
https://doi.org/10.1007/978-3-030-41579-2_2
https://doi.org/10.18653/v1/2020.emnlp-main.498
http://arxiv.org/abs/1412.6572
https://doi.org/10.48550/ARXIV.1810.12715
https://proceedings.mlr.press/v162/hao22c.html
https://doi.org/10.1109/CVPR46437.2021.01501
https://doi.org/10.1109/CVPR46437.2021.01501
https://aaai.org/ocs/index.php/WS/AAAIW18/paper/view/16594
https://doi.org/10.1145/2046684.2046692
https://doi.org/10.1145/3180445.3180449
https://doi.org/10.18653/v1/D19-1423
https://doi.org/10.1109/ICMLA.2018.00168
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-Whitepaper-Machine-Learning.pdf
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-Whitepaper-Machine-Learning.pdf
https://doi.org/10.23919/EUSIPCO.2018.8553214
https://doi.org/10.23919/EUSIPCO.2018.8553214
http://jmlr.org/papers/v7/kolter06a.html
https://doi.org/10.48550/ARXIV.1802.04528
https://doi.org/10.1109/SP.2019.00044


1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

CCS ’23, Month 01–05, 2023, Woodstock, NY Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Advances in Neural Information Processing Systems (NeurIPS, Vol. 32). Curran
Associates, Inc., 4910–4921.

[45] Klas Leino, Zifan Wang, and Matt Fredrikson. 2021. Globally-Robust Neural

Networks. In Proceedings of the 38th International Conference on Machine Learning
(Proceedings of Machine Learning Research, Vol. 139). PMLR, 6212–6222. https:

//proceedings.mlr.press/v139/leino21a.html

[46] Alexander Levine and Soheil Feizi. 2020. Robustness Certificates for Sparse

Adversarial Attacks by Randomized Ablation. Proceedings of the AAAI Conference
on Artificial Intelligence 34, 04 (2020), 4585–4593. https://doi.org/10.1609/aaai.

v34i04.5888

[47] Bai Li, Changyou Chen, Wenlin Wang, and Lawrence Carin. 2019. Certified

Adversarial Robustness with Additive Noise. In Advances in Neural Information
Processing Systems (NeurIPS, Vol. 32). Curran Associates, Inc., 9459–9469.

[48] Linyi Li, Maurice Weber, Xiaojun Xu, Luka Rimanic, Bhavya Kailkhura, Tao Xie,

Ce Zhang, and Bo Li. 2021. TSS: Transformation-Specific Smoothing for Robust-

ness Certification. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security (CCS). Association for Computing Machinery, New

York, NY, USA, 535–557. https://doi.org/10.1145/3460120.3485258

[49] Kaijun Liu, Shengwei Xu, Guoai Xu, Miao Zhang, Dawei Sun, and Haifeng Liu.

2020. A Review of Android Malware Detection Approaches Based on Machine

Learning. IEEE Access 8 (2020), 124579–124607. https://doi.org/10.1109/ACCESS.

2020.3006143

[50] Xuanqing Liu, Minhao Cheng, Huan Zhang, and Cho-Jui Hsieh. 2018. Towards

Robust Neural Networks via Random Self-ensemble. In Computer Vision – ECCV
2018. Springer, 381–397. https://doi.org/10.1007/978-3-030-01234-2_23

[51] Daniel Lowd and Christopher Meek. 2005. Good Word Attacks on Statistical

Spam Filters.. In Second Conference on Email and Anti-Spam (CEAS).
[52] Keane Lucas, Mahmood Sharif, Lujo Bauer, Michael K. Reiter, and Saurabh Shintre.

2021. Malware Makeover: Breaking ML-Based Static Analysis by Modifying

Executable Bytes. In Proceedings of the 2021 ACM Asia Conference on Computer
and Communications Security (AsiaCCS). Association for Computing Machinery,

New York, NY, USA, 744–758. https://doi.org/10.1145/3433210.3453086

[53] Microsoft Corporation. 2022. PE Format. Retrieved 2022-09-14 from https:

//docs.microsoft.com/en-us/windows/win32/debug/pe-format

[54] Microsoft Defender Security Research Team. 2019. New machine learn-

ing model sifts through the good to unearth the bad in evasive malware.

Retrieved Accessed: 2022-11-28 from https://www.microsoft.com/en-

us/security/blog/2019/07/25/new-machine-learning-model-sifts-through-

the-good-to-unearth-the-bad-in-evasive-malware/

[55] Matthew Mirman, Timon Gehr, and Martin Vechev. 2018. Differentiable Ab-

stract Interpretation for Provably Robust Neural Networks. In Proceedings of
the 35th International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 80). PMLR, 3578–3586. https://proceedings.mlr.press/

v80/mirman18b.html

[56] National Security Agency. [n. d.]. Ghidra (version 10.1.5). Retrieved 2022-10-23

from https://www.nsa.gov/ghidra

[57] Dario Nisi, Mariano Graziano, Yanick Fratantonio, and Davide Balzarotti. 2021.

Lost in the Loader: TheMany Faces of theWindows PE File Format. In Proceedings
of the 24th International Symposium on Research in Attacks, Intrusions and Defenses
(RAID). Association for Computing Machinery, New York, NY, USA, 177–192.

https://doi.org/10.1145/3471621.3471848

[58] Raphael Olivier and Bhiksha Raj. 2021. Sequential Randomized Smoothing for

Adversarially Robust Speech Recognition. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing (EMNLP). Association for

Computational Linguistics, 6372–6386. https://doi.org/10.18653/v1/2021.emnlp-

main.514

[59] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami.

2016. Distillation as a Defense to Adversarial Perturbations Against Deep Neural

Networks. In 2016 IEEE Symposium on Security and Privacy (S&P). IEEE, 582–597.
https://doi.org/10.1109/SP.2016.41

[60] Daniel Park, Haidar Khan, and Bülent Yener. 2019. Generation & Evaluation of

Adversarial Examples for Malware Obfuscation. In 2019 18th IEEE International
Conference On Machine Learning And Applications (ICMLA). IEEE, 1283–1290.
https://doi.org/10.1109/ICMLA.2019.00210

[61] Frédéric Perriot. 2003. Defeating Polymorphism Through Code Optimization. In

Proceedings of the 2003 Virus Bulletin Conference (VB2003). Virus Bulletin Ltd.,

142–159.

[62] Yong Qiao, Yuexiang Yang, Lin Ji, and Jie He. 2013. Analyzing Malware by

Abstracting the Frequent Itemsets in API Call Sequences. In 2013 12th IEEE
International Conference on Trust, Security and Privacy in Computing and Com-
munications. IEEE, 265–270. https://doi.org/10.1109/TrustCom.2013.36

[63] Erwin Quiring, Lukas Pirch, Michael Reimsbach, Daniel Arp, and Konrad Rieck.

2020. Against All Odds: Winning the Defense Challenge in an Evasion Competi-

tion with Diversification. https://doi.org/10.48550/ARXIV.2010.09569

[64] Edward Raff, Jon Barker, Jared Sylvester, Robert Brandon, Bryan Catanzaro,

and Charles K. Nicholas. 2018. Malware Detection by Eating a Whole EXE. In

The Workshops of the Thirty-Second AAAI Conference on Artificial Intelligence
(AAAI Workshops). AAAI Press, 268–276. https://aaai.org/ocs/index.php/WS/

AAAIW18/paper/view/16422

[65] Edward Raff, William Fleshman, Richard Zak, Hyrum S. Anderson, Bobby Filar,

and Mark McLean. 2021. Classifying Sequences of Extreme Length with Constant

Memory Applied to Malware Detection. Proceedings of the AAAI Conference
on Artificial Intelligence 35, 11 (2021), 9386–9394. https://doi.org/10.1609/aaai.

v35i11.17131

[66] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. 2018. Certified Defenses

against Adversarial Examples. In 6th International Conference on Learning Repre-
sentations (ICLR). OpenReview.net. https://openreview.net/forum?id=Bys4ob-Rb

[67] Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che. 2019. Generating Natural

Language Adversarial Examples through Probability Weighted Word Saliency.

In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguistics, 1085–1097. https://doi.

org/10.18653/v1/P19-1103

[68] Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick Düssel, and Pavel Laskov.

2008. Learning and Classification of Malware Behavior. In Detection of Intrusions
and Malware, and Vulnerability Assessment. Springer Berlin Heidelberg, Berlin,

Heidelberg, 108–125.

[69] Ishai Rosenberg, Asaf Shabtai, Yuval Elovici, and Lior Rokach. 2020. Query-

Efficient Black-Box Attack Against Sequence-Based Malware Classifiers. In

Annual Computer Security Applications Conference (ACSAC). Association for

Computing Machinery, New York, NY, USA, 611–626. https://doi.org/10.1145/

3427228.3427230

[70] Ishai Rosenberg, Asaf Shabtai, Lior Rokach, and Yuval Elovici. 2018. Generic

Black-Box End-to-End Attack Against State of the Art API Call Based Malware

Classifiers. In Research in Attacks, Intrusions, and Defenses. Springer, Cham, 490–

510.

[71] Hadi Salman, Jerry Li, Ilya Razenshteyn, Pengchuan Zhang, Huan Zhang, Se-

bastien Bubeck, and Greg Yang. 2019. Provably Robust Deep Learning via

Adversarially Trained Smoothed Classifiers. In Advances in Neural Information
Processing Systems (NeurIPS, Vol. 32). Curran Associates, Inc., 11289–11300.

[72] Matthew G. Schultz, Eleazar Eskin, Erez Zadok, and Salvatore J. Stolfo. 2001.

Data mining methods for detection of new malicious executables. In 2001 IEEE
Symposium on Security and Privacy (S&P). IEEE, 38–49. https://doi.org/10.1109/

SECPRI.2001.924286

[73] Mahmood Sharif, Lujo Bauer, and Michael K. Reiter. 2018. On the Suitability of

Lp-Norms for Creating and Preventing Adversarial Examples. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).
IEEE, 1605–1613. https://doi.org/10.1109/CVPRW.2018.00211

[74] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K. Reiter. 2016.

Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face

Recognition. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (CCS). Association for Computing Machinery, New

York, NY, USA, 1528–1540. https://doi.org/10.1145/2976749.2978392

[75] Chocolatey Software. [n. d.]. Chocolatey Software. Retrieved 2022-10-11 from

https://chocolatey.org/

[76] Wei Song, Xuezixiang Li, Sadia Afroz, Deepali Garg, Dmitry Kuznetsov, and

Heng Yin. 2022. MAB-Malware: A Reinforcement Learning Framework for

Blackbox Generation of Adversarial Malware. In Proceedings of the 2022 ACMAsia
Conference on Computer and Communications Security (AsiaCCS). Association
for Computing Machinery, New York, NY, USA, 990–1003. https://doi.org/10.

1145/3488932.3497768

[77] Octavian Suciu, Scott E. Coull, and Jeffrey Johns. 2019. Exploring Adversarial

Examples in Malware Detection. In 2019 IEEE Security and Privacy Workshops
(S&PW). IEEE, 8–14. https://doi.org/10.1109/SPW.2019.00015

[78] Florian Tramèr, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. 2020.

On adaptive attacks to adversarial example defenses. In Advances in Neural
Information Processing Systems (NeurIPS, Vol. 33), Hugo Larochelle, Marc’Aurelio

Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (Eds.). Curran

Associates, Inc., 1633–1645.

[79] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh,

and Patrick McDaniel. 2018. Ensemble Adversarial Training: Attacks and De-

fenses. In 6th International Conference on Learning Representations (ICLR). Open-
Review.net. https://openreview.net/forum?id=rkZvSe-RZ

[80] Spark Tsao. 2019. Faster and More Accurate Malware Detection

Through Predictive Machine Learning. Retrieved 2022-11-25

from https://www.trendmicro.com/vinfo/pl/security/news/security-

technology/faster-and-more-accurate-malware-detection-through-predictive-

machine-learning-correlating-static-and-behavioral-features

[81] Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. 2018. Lipschitz-Margin

Training: Scalable Certification of Perturbation Invariance for Deep Neural

Networks. In Advances in Neural Information Processing Systems (NeurIPS, Vol. 31).
Curran Associates Inc., 6542–6551.

[82] R. Vinayakumar, Mamoun Alazab, K. P. Soman, Prabaharan Poornachandran,

and Sitalakshmi Venkatraman. 2019. Robust Intelligent Malware Detection Using

Deep Learning. IEEE Access 7 (2019), 46717–46738. https://doi.org/10.1109/

ACCESS.2019.2906934

14

https://proceedings.mlr.press/v139/leino21a.html
https://proceedings.mlr.press/v139/leino21a.html
https://doi.org/10.1609/aaai.v34i04.5888
https://doi.org/10.1609/aaai.v34i04.5888
https://doi.org/10.1145/3460120.3485258
https://doi.org/10.1109/ACCESS.2020.3006143
https://doi.org/10.1109/ACCESS.2020.3006143
https://doi.org/10.1007/978-3-030-01234-2_23
https://doi.org/10.1145/3433210.3453086
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://www.microsoft.com/en-us/security/blog/2019/07/25/new-machine-learning-model-sifts-through-the-good-to-unearth-the-bad-in-evasive-malware/
https://www.microsoft.com/en-us/security/blog/2019/07/25/new-machine-learning-model-sifts-through-the-good-to-unearth-the-bad-in-evasive-malware/
https://www.microsoft.com/en-us/security/blog/2019/07/25/new-machine-learning-model-sifts-through-the-good-to-unearth-the-bad-in-evasive-malware/
https://proceedings.mlr.press/v80/mirman18b.html
https://proceedings.mlr.press/v80/mirman18b.html
https://www.nsa.gov/ghidra
https://doi.org/10.1145/3471621.3471848
https://doi.org/10.18653/v1/2021.emnlp-main.514
https://doi.org/10.18653/v1/2021.emnlp-main.514
https://doi.org/10.1109/SP.2016.41
https://doi.org/10.1109/ICMLA.2019.00210
https://doi.org/10.1109/TrustCom.2013.36
https://doi.org/10.48550/ARXIV.2010.09569
https://aaai.org/ocs/index.php/WS/AAAIW18/paper/view/16422
https://aaai.org/ocs/index.php/WS/AAAIW18/paper/view/16422
https://doi.org/10.1609/aaai.v35i11.17131
https://doi.org/10.1609/aaai.v35i11.17131
https://openreview.net/forum?id=Bys4ob-Rb
https://doi.org/10.18653/v1/P19-1103
https://doi.org/10.18653/v1/P19-1103
https://doi.org/10.1145/3427228.3427230
https://doi.org/10.1145/3427228.3427230
https://doi.org/10.1109/SECPRI.2001.924286
https://doi.org/10.1109/SECPRI.2001.924286
https://doi.org/10.1109/CVPRW.2018.00211
https://doi.org/10.1145/2976749.2978392
https://chocolatey.org/
https://doi.org/10.1145/3488932.3497768
https://doi.org/10.1145/3488932.3497768
https://doi.org/10.1109/SPW.2019.00015
https://openreview.net/forum?id=rkZvSe-RZ
https://www.trendmicro.com/vinfo/pl/security/news/security-technology/faster-and-more-accurate-malware-detection-through-predictive-machine-learning-correlating-static-and-behavioral-features
https://www.trendmicro.com/vinfo/pl/security/news/security-technology/faster-and-more-accurate-malware-detection-through-predictive-machine-learning-correlating-static-and-behavioral-features
https://www.trendmicro.com/vinfo/pl/security/news/security-technology/faster-and-more-accurate-malware-detection-through-predictive-machine-learning-correlating-static-and-behavioral-features
https://doi.org/10.1109/ACCESS.2019.2906934
https://doi.org/10.1109/ACCESS.2019.2906934


1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Certified Robustness of Learning-based Static Malware Detectors CCS ’23, Month 01–05, 2023, Woodstock, NY

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

[83] VIPRE. [n. d.]. VIPRE Android Security. Retrieved 2022-12-22 from https:

//vipre.com/home/vipre-android-security/

[84] VirusShare.com. [n. d.]. VirusShare.com. Retrieved 2022-10-11 from https:

//virusshare.com/

[85] Yevgeniy Vorobeychik and Murat Kantarcioglu. 2018. Adversarial Ma-
chine Learning. Morgan & Claypool Publishers. https://doi.org/10.2200/

S00861ED1V01Y201806AIM039

[86] Robert A. Wagner and Michael J. Fischer. 1974. The String-to-String Correction

Problem. J. ACM 21, 1 (Jan. 1974), 168–173. https://doi.org/10.1145/321796.

321811

[87] AndrewWalenstein, Rachit Mathur, Mohamed R. Chouchane, and Arun Lakhotia.

2006. Normalizing Metamorphic Malware Using Term Rewriting. In 2006 Sixth
IEEE International Workshop on Source Code Analysis and Manipulation. IEEE,
75–84. https://doi.org/10.1109/SCAM.2006.20

[88] Lily Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel,

Duane Boning, and Inderjit Dhillon. 2018. Towards Fast Computation of Certified

Robustness for ReLUNetworks. In Proceedings of the 35th International Conference
on Machine Learning (Proceedings of Machine Learning Research, Vol. 80). PMLR,

5276–5285. https://proceedings.mlr.press/v80/weng18a.html

[89] EricWong and Zico Kolter. 2018. Provable Defenses against Adversarial Examples

via the Convex Outer Adversarial Polytope. In Proceedings of the 35th Interna-
tional Conference on Machine Learning (Proceedings of Machine Learning Research,
Vol. 80). PMLR, 5286–5295. https://proceedings.mlr.press/v80/wong18a.html

[90] Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J. Zico Kolter. 2018. Scaling

provable adversarial defenses. In Advances in Neural Information Processing
Systems (NeurIPS, Vol. 31). Curran Associates, Inc., 8410–8419.

[91] Greg Yang, Tony Duan, J. Edward Hu, Hadi Salman, Ilya Razenshteyn, and Jerry

Li. 2020. Randomized Smoothing of All Shapes and Sizes. In Proceedings of
the 37th International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 119). PMLR, 10693–10705. https://proceedings.mlr.press/

v119/yang20c.html

[92] Mao Ye, Chengyue Gong, and Qiang Liu. 2020. SAFER: A Structure-free Approach

for Certified Robustness to Adversarial Word Substitutions. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics. Association
for Computational Linguistics, 3465–3475. https://doi.org/10.18653/v1/2020.acl-

main.317

[93] Yanfang Ye, Lifei Chen, Dingding Wang, Tao Li, Qingshan Jiang, and Min Zhao.

2008. SBMDS: an interpretable string based malware detection system using

SVM ensemble with bagging. Journal in Computer Virology 5, 4 (26 Nov. 2008),

283. https://doi.org/10.1007/s11416-008-0108-y

[94] Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal, Robert Stanforth, Bo Li,

Duane Boning, and Cho-Jui Hsieh. 2020. Towards Stable and Efficient Training of

Verifiably Robust Neural Networks. In 8th International Conference on Learning
Representations (ICLR). OpenReview.net. https://openreview.net/forum?id=

Skxuk1rFwB

[95] Zhaoqi Zhang, Panpan Qi, andWeiWang. 2020. Dynamic Malware Analysis with

Feature Engineering and Feature Learning. Proceedings of the AAAI Conference
on Artificial Intelligence 34, 1 (2020), 1210–1217. https://doi.org/10.1609/aaai.

v34i01.5474

A BRUTE-FORCE EDIT DISTANCE
CERTIFICATION

In this appendix, we show that an edit distance certification mech-

anism based on brute-force search is computationally infeasible.

Suppose we are interested in issuing an edit distance certificate

at radius 𝑟 for a malware detector 𝑓 at input file x. Recall from
Definition 2.2 that in order to issue a certificate, we must show

there exists no adversarial file x′ within the edit distance neigh-

borhood N𝑟 (x) that would change 𝑓 ’s prediction. This problem

can theoretically be solved in a brute-force manner, by querying

𝑓 for all inputs in N𝑟 (x). In the best case, this would take time

linear in |N𝑟 (x) |, assuming 𝑓 responds to queries in constant time.

However the following lower bound [13], shows that the size of

the edit distance neighborhood is too large even in the best case:

|N𝑟 (x) | ≥
𝑟∑︁
𝑖=0

255
𝑖

𝑟∑︁
𝑗=𝑖−𝑟

(
|x| + 𝑗

𝑖

)
.

For example, brute-force certification for a small file of size |x| =
10KB and certificate radius 𝑟 = 10 would require N𝑟 (x) ≥ 10

58

queries to 𝑓 . In contrast, our probabilistic certification mechanism

(Algorithm 1) makes 𝑛
pred
+𝑛

bound
queries to 𝑓 , and we can provide

high probability guarantees when the number of queries is of order

10
3
or 10

4
.

B PROOFS FOR SECTION 3.2
In this appendix, we provide proofs of the theoretical results stated

in Section 3.2.

B.1 Proof of Lemma 3.3
Let 𝑟𝑆 : 𝑆 → {1, . . . , |𝑆 |} be a bijection that returns the rank of

an element in an ordered set 𝑆 . Let ¤𝑟𝑆 : 2
𝑆 → 2

{1,..., |𝑆 | }
be an

elementwise extension of 𝑟𝑆 that returns a set of ranks for an ordered
set of elements—i.e., ¤𝑟𝑆 (𝑈 ) = { 𝑟𝑆 (𝑖) : 𝑖 ∈ 𝑈 } for 𝑈 ⊆ 𝑆 . We

claim𝑚(𝜖) = ¤𝑟−1

𝜖★
( ¤𝑟𝜖★ (𝜖)) is a bijection that satisfies the required

property.

To prove the claim, we note that 𝑚 is a bijection from 2
𝜖★

to

2
𝜖★

since it is a composition of bijections ¤𝑟𝜖★ : 2
𝜖★ → 2

{1,...,𝑙 }

and ¤𝑟−1

𝜖★
: 2
{1,...,𝑙 } → 2

𝜖★
where 𝑙 = |𝜖★ | = |𝜖★ |. Next, we observe

that ¤𝑟𝜖★ (𝜖) relabels indices in 𝜖 so they have the same effect when

applied to z★ as 𝜖 on x (this also holds for ¤𝑟𝜖★ and 𝜖). Thus

apply(x, 𝜖) = apply(z★, ¤𝑟𝜖★ (𝜖))
= apply(z★, ¤𝑟𝜖★ ( ¤𝑟−1

𝜖 ( ¤𝑟𝜖★ (𝜖))))
= apply(x̄,𝑚(𝜖))

as required. To prove the final statement, we use (4), (5) and (9) to

write

𝑠 (𝜖, x; 𝑓
b
)

𝑠 (𝜖, x̄; 𝑓
b
) =

1𝑓
b
(apply(x,𝜖 ) )=𝑦𝑝

|x |− |𝜖 |
del (1 − 𝑝del) |𝜖 |

1𝑓
b
(apply(x̄,𝜖 ) )=𝑦𝑝

|x̄ |− |𝜖 |
del (1 − 𝑝del) |𝜖 |

=
𝑝
|x |− |z |
del (1 − 𝑝del) |z |1𝑓

b
(z)=𝑦

𝑝
|x̄ |− |z |
del (1 − 𝑝del) |z |1𝑓

b
(z)=𝑦

= 𝑝
|x |− |x̄ |
del ,

where the second last line follows from the fact that apply(x, 𝜖) =
apply(x̄, 𝜖) = z.

B.2 Proof of Theorem 3.4
Let 𝜖★ and 𝜖★ be defined as in Lemma 3.3. We derive an upper

bound on the sum over 𝜖 ∈ 2
𝜖★

that appears in (10). Observe that∑︁
𝜖∉2

𝜖★

𝑠 (𝜖, x̄; 𝑓
b
) ≤

∑︁
𝜖∉2

𝜖★

Pr [𝐺 (x̄) = 𝜖]

= 1 −
∑︁

𝜖∈2
𝜖★

Pr [𝐺 (x̄) = 𝜖]

= 1 − 𝑝 |x̄ |− |𝜖
★ |

del

|𝜖★ |∑︁
|𝜖 |=0

(
|𝜖★ |
|𝜖 |

)
𝑝
|𝜖★ |− |𝜖 |
del (1 − 𝑝del) |𝜖 |

= 1 − 𝑝 |x̄ |− |𝜖
★ |

del , (17)

where the first line follows from the inequality 1𝑓
b
(apply(x̄,𝜖 )=𝑦) ≤ 1;

the second line follows from the law of total probability; the third

line follows by constraining the indices {1, . . . , |x̄|}\𝜖★ to be deleted;

and the last line follows from the normalization of the binomial

15

https://vipre.com/home/vipre-android-security/
https://vipre.com/home/vipre-android-security/
https://virusshare.com/
https://virusshare.com/
https://doi.org/10.2200/S00861ED1V01Y201806AIM039
https://doi.org/10.2200/S00861ED1V01Y201806AIM039
https://doi.org/10.1145/321796.321811
https://doi.org/10.1145/321796.321811
https://doi.org/10.1109/SCAM.2006.20
https://proceedings.mlr.press/v80/weng18a.html
https://proceedings.mlr.press/v80/wong18a.html
https://proceedings.mlr.press/v119/yang20c.html
https://proceedings.mlr.press/v119/yang20c.html
https://doi.org/10.18653/v1/2020.acl-main.317
https://doi.org/10.18653/v1/2020.acl-main.317
https://doi.org/10.1007/s11416-008-0108-y
https://openreview.net/forum?id=Skxuk1rFwB
https://openreview.net/forum?id=Skxuk1rFwB
https://doi.org/10.1609/aaai.v34i01.5474
https://doi.org/10.1609/aaai.v34i01.5474


1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

CCS ’23, Month 01–05, 2023, Woodstock, NY Anon.

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

distribution. Putting (17) and

∑
𝜖∈2

𝜖★ 𝑠 (𝜖, x; 𝑓
b
) ≥ 0 in (10) then

gives the required result.

B.3 Proof of Corollary 3.5
Since the length of x̄ can only be changed by inserting or deleting

bytes in x, we have |x̄| − |x| = 𝑛ins − 𝑛del. We also observe that x
can be transformed into x̄ using the longest common subsequence

z★ as an intermediary. Specifically, 𝑛del + 𝑛sub bytes can be deleted

from x to yield z★, then 𝑛ins + 𝑛sub bytes can be inserted in z★ to

yield x̄. This implies |x̄| − |z★ | = 𝑛ins + 𝑛sub. Substituting the above
identities in (11) gives the required result.

B.4 Proof of Theorem 3.6
Eliminating𝑛sub from (13) using the constraint𝑛sub = 𝑟−𝑛del−𝑛ins,
we obtain a minimization problem in two variables:

min

𝑛ins,𝑛del∈N0

𝜓 (𝑛ins, 𝑛del)

s.t. 0 ≤ 𝑛ins + 𝑛del ≤ 𝑟

where 𝜓 (𝑛ins, 𝑛del) = 𝑝
𝑛del−𝑛ins
del

(
𝜇𝑦 − 1 + 𝑝𝑟−𝑛del

del

)
. Observe that 𝜓

is monotonically increasing in 𝑛ins and 𝑛del:

𝜓 (𝑛ins + 1, 𝑛del)
𝜓 (𝑛ins, 𝑛del)

=
1

𝑝del
≥ 1

𝜓 (𝑛ins, 𝑛del + 1)
𝜓 (𝑛ins, 𝑛del)

=
(𝜇𝑦 − 1)𝑝𝑛del+1

del + 𝑝𝑟del
(𝜇𝑦 − 1)𝑝𝑛del

del + 𝑝
𝑟
del

≥ 1,

where the second inequality follows since we only consider 𝑟 and

𝜇𝑦 such that the numerator and denominator are positive. Thus

the minimizer is (𝑛★ins, 𝑛
★
del, 𝑛

★
sub) = (0, 0, 𝑟 ) and we find 𝜌 (x̄; 𝜇𝑦) =

𝜇𝑦 − 1 + 𝑝𝑟del. The expression for the largest certified radius follows

by solving 𝜌 (x̄; 𝜇𝑦) > 𝜂𝑦 for non-negative integer 𝑟 .

B.5 Proof of Corollary 3.7
Recall that Corollary 3.5 gives the following lower bound on the

smoothed detector’s score at x:

lb𝑦 (x; x̄, 𝜇𝑦) = 𝑝
𝑛del−𝑛ins
del

(
𝜇𝑦 − 1 + 𝑝𝑛sub+𝑛ins

del

)
.

Observe that we can replace 𝜇𝑦 by a lower bound 𝜇𝑦 that holds with

probability 1− 𝛼 (as is done in lines 3–4 of Algorithm 1) and obtain

a looser lower bound lb𝑦 (x; x̄, 𝜇𝑦) ≤ lb𝑦 (x; x̄, 𝜇𝑦) that holds with
probability 1 − 𝛼 . Crucially, this looser lower bound has the same

functional form, so all results depending on Corollary 3.5, namely

Theorem 3.6 and Table 1, continue to hold albeit with probability

1 − 𝛼 .

C ADDITIONAL RESULTS FOR
EFFECTIVENESS OF CERTIFICATION

In this appendix, we present supplementary results for Section 4.2,

covering accuracy and robustness guarantees of our method (RS-
Del).

Table 7 reports clean accuracy for RS-Del and the non-certified

NS baseline. It also reports abstention rates for RS-Del, the median

certified radius (CR), and the median certified radius normalized

by file size (NCR). We find that clean accuracy for Sleipnir2 follows

similar trends as certified accuracy: it is relatively stable as the dele-

tion probability increases to 𝑝del = 99.5%, but suffers a significant

drop at 𝑝del = 99.9%. We observe minimal differences in the results

for instruction (Insn) and byte-level (Byte) smoothing, but note

that the effective CR is larger for instruction smoothing, since each

token may contain several bytes.

Table 7: Clean accuracy and robustness metrics for RS-Del
as a function of the dataset (Sleipnir2 and VTFeed), deletion
probability 𝑝del and elementary token (bytes and instruc-
tions). All metrics are computed on the test set. Here “abstn.
rate” refers to the fraction of test instances for which RS-Del
abstains (line 6 in Algorithm 1), and “UB” refers to an upper
bound on the median CR for a best case smoothed detector
(based on Table 1 with 𝜇𝑦 = 1). A good tradeoff is achieved
when 𝑝del = 99.5% for both the byte- and instruction-level
threat models (highlighted in bold face below).

Params Clean accuracy Median Median

Detector token, 𝑝del (Abstn. rate) % CR (UB) NCR %

Sleipnir2

NS 98.9 − − − −

RS-Del

Byte, 90% 97.1 (0.2) 6 (6) 0.0023

Byte, 95% 97.8 (0.0) 13 (13) 0.0052

Byte, 97% 97.4 (0.1) 22 (22) 0.0093

Byte, 99% 98.1 (0.1) 68 (68) 0.0262

Byte, 99.5% 96.5 (0.2) 137 (138) 0.0555
Byte, 99.9% 83.7 (3.4) 688 (692) 0.2269

Insn, 90% 97.9 (0.1) 6 (6) 0.0026

Insn, 95% 97.8 (0.1) 13 (13) 0.0056

Insn, 97% 98.3 (0.0) 22 (22) 0.0095

Insn, 99% 97.6 (0.1) 68 (68) 0.0292

Insn, 99.5% 96.8 (0.2) 137 (138) 0.0589
Insn, 99.9% 86.1 (0.2) 689 (692) 0.2982

VTFeed

NS 98.9 − − − −

RS-Del Byte, 97% 92.1 (0.9) 22 (22) 0.033

Figure 4 plots the certified accuracy of RS-Del on the Sleip-
nir2 dataset using instruction-level Levenshtein distance. It is an

analogue of Figure 2, which plots certified accuracy for byte-level

Levenshtein distance. We observe similar trends in both plots and

refer the reader to the discussion in Section 4.2.1. We note that the

instruction-level variant of RS-Del arguably provides stronger guar-
antees, since the effective radius for instruction-level Levenshtein

distance is larger than for byte-level Levenshtein distance.

Figure 5 plots the certified true positive rate (TPR) and true

negative rate (TNR) of RS-Del on the Sleipnir2 dataset for several
values of the decision threshold 𝜂1. The certified TPR and TNR can

be interpreted as class-specific analogues of the certified accuracy.

Concretely, the certified TPR (TNR) at radius 𝑟 is the fraction of

malicious (benign) instances in the test set for which the malware

detector’s prediction is correct and certified robust at radius 𝑟 . The

certified TPR and TNR jointly measure accuracy and robustness and

complement the metrics reported in Table 3. Looking at Figure 5,

16



1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

Certified Robustness of Learning-based Static Malware Detectors CCS ’23, Month 01–05, 2023, Woodstock, NY

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

0 100 200 300 400 500 600 700

Radius, r

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
er

ti
fi

ed
a

cc
u

ra
cy

pdel

97%

99%

99.5%

99.9%

Figure 4: Certified accuracy of RS-Del as a function of the
certificate radius (horizontal axis) and token deletion prob-
ability 𝑝del (colored line styles). The results are plotted for
the Sleipnir2 test set under the instruction-level Levenshtein
distance threat model (with 𝑂 = {del, ins, sub}). It is apparent
that 𝑝del controls a robustness/accuracy tradeoff. The grey
vertical lines represent the best achievable certified radius
for RS-Del (setting 𝜇𝑦 = 1 in Table 1). Note that in this setting,
a non-smoothed, non-certified detector (NS) achieves a clean
accuracy of 98%.

we see that the certified TNR curves drop more rapidly to zero

than the certified TPR curves as 𝜂1 decreases. This is in line with

comments made in Section 4.2—that decreasing 𝜂1 sacrifices the

certified radii of benign instances to increase the certified radii of

malicious instances. We note that the curves for 𝜂1 = 1

2
correspond

to the same setting as the certified accuracy curve in Figure 2 (with

𝑝del = 99.5%).

Table 8 provides raw certified accuracy data for two of the cases

plotted in Figure 3 (RS-Del at 𝑝del = 99.5% and RS-Abn at 𝑝ab =

99.5%). We find that RS-Del outperforms RS-Abn for all radii up to

138, which is the largest possible certified radius achievable for the

Hamming distance threat model using our method (see Table 1).

This is notable given our method is not specifically designed for

the Hamming distance threat model.

D EFFICIENCY OF RANDOMIZED
SMOOTHING

In this appendix, we discuss the training and computational effi-

ciency of RS-Del and provide comparisons with RS-Abn.

Computational efficiency. Table 9 provides wall clock times for

training and prediction of smoothed detectors. The prediction times

are further decomposed into subtasks: input randomization and pre-

diction for the base detector. All times are recorded on a desktop PC

fitted with an AMD Ryzen 7 5800X CPU and an NVIDIA RTX3090

GPU. We execute training and prediction for the base MalConv

model on the GPU, and input randomization on the CPU. We use

a single PyTorch process, noting that times may be improved by

enabling parallel processing for input randomization.

0 200 400 600 800 1000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
er

ti
fi

ed
T

P
R

η1

50% 25% 10% 5% 1% 0.5%

0 200 400 600 800 1000

Radius, r

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
er

ti
fi

ed
T

N
R

Figure 5: Certified true positive rate (TPR) and true negative
rate (TNR) of RS-Del as a function of the certificate radius 𝑟
(horizontal axis) and the decision threshold 𝜂1 (colored line
styles). The results are plotted for the Sleipnir2 test set with
𝑝del = 99.5% under the byte-level Levenshtein distance threat
model (with 𝑂 = {del, ins, sub}). It is apparent that 𝜂1 controls
a tradeoff in the certified radius between the malicious (mea-
sured by TPR) and benign (measured by TNR) classes. Note
that in this setting, a non-smoothed, non-certified detector
(NS) achieves a clean TPR and TNR of 98.2% and 99.5% respec-
tively.

We nowmake some observations about the results. First, we note

that training is an order of magnitude faster for RS-Del compared

with RS-Abn. This is due to the deletion randomization scheme we

propose for RS-Del, which drastically reduces the length of inputs,

thereby reducing the time taken to perform forward and backward

passes for the base detector. On the contrary, the ablation random-

ization scheme for RS-Abn does not alter the length of inputs, so it

does not have a performance advantage in this respect. Second, we

note that there is no significant difference in the prediction time

for the two detectors. While the time taken to pass the randomized

inputs through the base detector is an order of magnitude faster

for RS-Del, it does not have an impact on the total prediction time,

as input randomization dominates.

Training efficiency. Training curves for the base MalConv de-

tectors used in RS-Del and RS-Abn are provided in Figure 6 for

the Sleipnir2 dataset. RS-Del is trained using stochastic gradient

17



1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

CCS ’23, Month 01–05, 2023, Woodstock, NY Anon.

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

Table 8: Raw certified accuracy data used in Figure 3. Here
we provide data for RS-Del with 𝑝del = 99.5% (our method)
and RS-Abn with 𝑝ab = 99.5% [46]. Note that the certificates
are for the Hamming distance threat model.

Certified accuracy (%)

Radius RS-Del RS-Abn

110 92.33 82.26

112 92.19 82.01

114 92.07 81.90

116 91.89 81.67

118 91.79 81.39

120 91.68 81.17

122 91.59 80.82

124 91.53 79.96

126 91.35 78.70

128 91.09 78.29

130 88.43 77.86

132 86.78 77.13

134 86.39 75.32

136 85.03 68.02

138 – 25.84

140 – 0.09

142 – 0.03

144 – 0.01

Table 9: Comparison of runtime efficiency for RS-Del (our
method) and RS-Abn [46]. The first column of wall times
measures the time taken to train the base detector MalConv
for one epoch on Sleipnir2. The second and third columns of
wall times decompose the time to make a prediction for the
smoothed detector for a 1MB input file. The second column
measures the time taken to apply the randomization scheme
𝑛

pred
= 1000 times and the third column measures the time

taken pass the randomized inputs through the base detector.

Wall time (s)

Predict

Train Randomize Base

Detector Parameters 1 epoch input predict

RS-Del 𝑝del = 0.9, Byte 354 10.42 0.070

RS-Del 𝑝del = 0.9, Insn 494 20.16 0.068

RS-Abn [46] 𝑝ab = 0.9 1692 15.29 0.352

RS-Del 𝑝del = 0.99, Byte 329 8.79 0.043

RS-Del 𝑝del = 0.99, Insn 544 18.62 0.043

RS-Abn [46] 𝑝ab = 0.99 1788 15.60 0.352

descent following standard parameters settings for MalConv [64].

Due to convergence issues for RS-Abn, we adapted training to incor-
porate gradient clipping when updating the embedding layer. This

addresses imbalance in the gradients arising from the dominance of

masked (ablated) values in the randomized inputs. However, even

with this fix, we observe slower convergence to a higher loss value

for RS-Abn than for RS-Del.

Combining the results of Table 9 and Figure 6, we conclude that

RS-Abn beats RS-Abn in terms of training efficiency as it requires

both fewer epochs to converge and takes less time per epoch.

0 20 40 60 80 100

Epoch

0.1

0.2

0.3

0.4

0.5

0.6

T
ra

in
in

g
lo

ss

Detector,parameters

RS-Del,pdel = 97%

RS-Del,pdel = 99.5%

RS-Abn,pab = 97%

RS-Abn,pab = 99.5%

Figure 6: Training curves for RS-Del (our method) using byte-
level deletion and RS-Abn [46] for the Sleipnir2 dataset.

E PARAMETER SETTINGS FOR MALCONV
In this appendix, we specify the parameter settings and training

procedure for MalConv, which is used as a standalone malware

detector in NS, and as a base malware detector for RS-Del and
RS-Abn. Table 10 summarizes our setup, which is consistent across

all three detectors except where specified. We follow the authors

of MalConv [64] when setting parameters for the model and the

optimizer, however we set a larger maximum input size of 2MiB to

accommodate larger files without clipping. Due to differences in

available GPU memory for the Sleipnir2 and VTFeed experiments,

we use a larger batch size for VTFeed than for Sleipnir2. We also set

a higher limit on the maximum number of epochs for VTFeed, as it
is a larger dataset, although the NS and RS-Del detectors converge
within 50 epochs for both datasets. To stabilize training for the

randomized smoothed malware detectors (RS-Del and RS-Abn), we
modify the randomization schemes during training only to ensure

at least 500 raw bytes are preserved. This may limit the number of

deletions for RS-Del and the number of ablated (masked) bytes for

RS-Abn. For RS-Abn, we clip the gradients for the embedding layer

to improve convergence (see Appendix D).

18



2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

Certified Robustness of Learning-based Static Malware Detectors CCS ’23, Month 01–05, 2023, Woodstock, NY

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

Table 10: Parameter settings for the MalConv model, opti-
mizer and training procedure. The parameter settings are
consistent across all detectors (NS, RS-Del, RS-Abn) except
where specified.

MalConv hyperparameters

Max input size 2097152

Embedding size 8

Window size 500

Channels 128

Optimizer

Optimizer torch.optim.SGD

Learning rate 0.01

Momentum 0.9

Weight decay 0.001

Training

Batch size 24 (Sleipnir2), 32 (VTFeed)
Max. epoch 50 (Sleipnir2), 100 (VTFeed)
Min. preserved

bytes

500 (RS-Del, RS-Abn), NA (NS)

Embedding gradient

clipping

0.5 (RS-Abn),∞ (RS-Del, NS)

Early stopping

If validation loss does not

improve after 10 epochs

19


	Abstract
	1 Introduction
	2 Problem formulation
	2.1 Static malware detection
	2.2 Threat model
	2.3 Certified robustness

	3 Methodology
	3.1 RS-Del: Randomized deletion smoothing
	3.2 Edit distance certificate
	3.3 Practical considerations

	4 Evaluation
	4.1 Experimental setup
	4.2 Accuracy and Certification of RS-Del
	4.3 Empirical robustness to attacks

	5 Related work
	6 Conclusion
	References
	A Brute-force edit distance certification
	B Proofs for Section 3.2
	B.1 Proof of Lemma 3.3
	B.2 Proof of Theorem 3.4
	B.3 Proof of Corollary 3.5
	B.4 Proof of Theorem 3.6
	B.5 Proof of Corollary 3.7

	C Additional results for effectiveness of certification
	D Efficiency of randomized smoothing
	E Parameter settings for MalConv

