
MalwareTotal: Exposing Weakness of Real-World Anti-virus
Software via a Black-Box Adversarial Attack

ABSTRACT
Robust malware variant detection is crucial for Anti-Virus Soft-
ware (AVs) in defending terminal security and mitigating individ-
ual cyberspace risks. In this paper, we propose MalwareTotal, an
reinforcement learning based adversarial framework to examine
different architectures of static anti-virus software robustness. Par-
ticularly, MalwareTotal models malware variant generation as a
Markov Decision Process, then we design a 23-dimensional discrete
action space by exploiting ambiguities of the PE format, and estab-
lish agent environments under a black-box situation. The proximal
policy optimization is utilized to optimize the sequential decision
making during variants generation. Our evaluations are conducted
on both machine learning based AVs, commercial terminal AVs
and an integrated online AV service, results show that mutated
malware generated by MalwareTotal achieves a 97.03% average at-
tack success rate over 5 anti-virus software. Besides, MalwareTotal
outperforms the SOTA method in widely used benchmarks, our
research designs a mutator that draws experiences from trained
RL agents to reveal that the real-world static anti-virus software
is facing a veritable challenge since they can be bypassed within 2
modifications.

KEYWORDS
malware mutation, black-box attack, proximal policy optimization,
malware detection
ACM Reference Format:
. 2023. MalwareTotal: Exposing Weakness of Real-World Anti-virus Soft-
ware via a Black-Box Adversarial Attack. In Proceedings of ACM Conference
(Conference’17). ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
Background.Anti-malware is the front-line of cyberspace security,
where mutated malware detection has always been a long-term
challenge for anti-virus software. According to SonicWall Cyber
Threat Report [1], malware attacked global users over 2.8 billion
times during the first half of 2022, of which 36.5% are mutated
malware. Despite of howmalicious campaigns are targeting victims,
it generally involves a piece of malware breaking into a system to
fulfill its goals such as exfiltrating data or attempting to render a
system unusable [2]. Particularly, detected malware is generally
useless in launching new attacks, therefore automatizing malware
generation by recycling detected threats could be an interesting

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

approach for attackers and, an additional constraint for malware
protection [3].

Motivation. As the number of malicious software increased in
the last years to hundreds of thousands of new malware samples
daily [4], security technologies can no longer purely rely on virus
signatures anymore, instead, they start using heuristics and ma-
chine learning techniques for over a decade [5]. The problem is that
exclusively relying on machine learning is hardly recommended
given the large number of false negative (FN) detections that may
arise [6], due to the fact that machine learning encounters an intrin-
sic obstacle that an indistinguishable perturbation changes the pre-
diction to an incorrect result, known as adversarial attack [7]. Prior
studies [8–12] have mounted such attacks on machine learning-
based malware detection models [13–15]. Nonetheless, through
our preliminary investigation, we find that most existing methods
more or less modify malware functionalities during their genera-
tion process, resulting in software crashing, no responding, etc [16].
Raphael et al. [17] achieve a functionality-preserving method by
deploying a virtual box to discard non-executable malware variants
during the generation, which is feasible but time-consuming. Be-
sides, when detectors are tailored to commercial anti-virus software
(AVs), there is no known research that can achieve more than 50%
average evasion rate, which is less pressing to real-world malware
detection [18].

Challenge. By digging into previous work [19–23], we conduct
latent reasons for unsatisfactory evasion ability below: (i) due to
the target is limited in open-sourced malware detectors, the de-
sign of manipulations is lack of diversity, for example, Luca et al.
[24] proposed a set of manipulations for DOS Header of malicious
files, as they found that MalConv [25] focuses more on PE Header
features. (ii) Some research [26–29] made a conventional hypoth-
esis that the full information of target detectors is known, which
is infeasible when facing commercial AVs. (iii) Most of the exist-
ing work is designed for one or a single type of malware detector,
while commercial AVs are often hybrid in underlying model ar-
chitecture. (iv) Previous work usually utilizes Genetic Algorithm
[30] or Multi-armed Bandit [31] for manipulation optimization,
but mutated malware generation requires exploring a giant high-
dimensional space [32], which leads to less satisfactory results in
evasion ability, query and time efficiency.

Aim and scope. In the light of these challenges, we propose Mal-
wareTotal, an automatic large-scale malware variants generation
method, to preserve original functionality during themanipulations,
we carefully test manifold PE file modifications and divide them
into four categories: header manipulation, section manipulation,
overlay manipulation, and instruction manipulation, eventually
unearth 23 functionality-preserving manipulations. Inspired by a
rookie hacker learning process, we optimize the malware muta-
tion process through proximal policy optimization [33], a steady
reinforcement learning algorithm. By recording the RL agent tra-
jectory in mutating malware, we calculate the importance of each

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

manipulation and design a simplified mutator without extra learn-
ing. It also allows a better understanding of why mutated malware
bypasses AV software, which has positive effects on reducing the
false negative rate in malware detection. To the best of our knowl-
edge, this paper presents the largest scale systematic analysis of
false negative detections in anti-virus software. The Results indi-
cate that the phenomenon of false negative detections is common
from machine learning-based malware detectors to commercial AV
software, the former might be due to the high dimensionality and
excessive linearity of neural networks [34], and the latter suggests
that current AV software may possess explicit vulnerabilities which
will be illustrated in Section 5.5.

Contribution. Our findings can benefit both researchers and
practitioners. Moreover, our findings can help further explore the
role of developers and companies in devising strategies for improv-
ing AV products. We also make the data and code used in our study
available in a replication repository. In summary, this paper brings
the following contributions:

• A Fully Functionality-preserving Attack. To our best
knowledge, MalwareTotal is the first method that automati-
cally generates mutated malware and fully preserves post-
modification functionalities. It includes four types with 23
malware manipulations and utilizes reinforcement learning
to optimize the attack process.

• A Practical Framework. We propose a proximal policy
optimization based malware evolution framework, which
is practical and effective in malware variants generation,
revealing the risks that static anti-virus software are facing
have been underestimated.

• Learning from amachine.We design a mutator that draws
experience from reinforcement learning trajectory through
calculating the importance of different manipulations, which
concludes the vulnerabilities of heterogeneous anti-virus
software.

• Efficient Evasion Performance.We conduct a thorough
evaluation of the end-to-end implementation of Malware-
Total, showing it can demonstrate substantially stronger by
an attack success rate up to at least 16.55%, while being 1.74
times faster in generating mutated variants, compared to the
state-of-the-art method.

Roadmap. The remainder of this paper is organized as follows:
Section II describes the preliminaries of the proposed method, while
Section III describes the threat model. Section IV illustrates the de-
sign of our study, and Section V discusses the study performance
on different AV detectors. Section VI discusses the potential mitiga-
tion and limitations of the proposed attack. After the discussion of
related work in Section VII, Section VIII concludes the paper.

2 PRELIMINARIES
2.1 PE File Format Brief Overview
The Windows portable executable (PE) format [35] defines how
executable programs are stored as a file on disk, including items
such as dynamic link library (DLL) and executable program for
Windows (EXE). To avoid breaking the functionality of malware
during mutation, there are members in each structure should not be
modified as they will be mapped into memory by the operate system

(OS) loader during execution. Here we give a brief introduction
about the PE file format as well as members can not be modified:

DOS Header and Stub. The DOS header contains metadata for
loading the executable inside a DOS environment, while the DOS
Stub is made up of few instructions that will print “This program
cannot be run in DOS mode” if executed inside a DOS environment.
From the perspective of an application functionality, the only rel-
evant locations contained inside the DOS Header are (i) member
e_magic i.e. the two-byte magic number MZ, which is the abbrevi-
ation of the designer, and (ii) the member e_lfanew, four bytes at
offset 0x3c, which is the pointer to the actual header. If one of these
two values is altered, the program will be considered as corrupted.

PE Header. It is the short form of IMAGE_NT_HEADER, and
contains the target architectures (conditional modifiable, detailed
in Section IV) that can run the program, the size of the header
(conditional modifiable) and the attributes of the file.

Optional Header. It is essential for EXEs and DLLs, as it con-
tains the information needed by the OS for loading the binary into
memory. Among these fields, the optional header specifies the (i)
file alignment (unmodifiable), a constraint on the structure of the ex-
ecutable, as each section in a PE file must start at an offset multiple
to that field, and the (ii) size of headers (conditional modifiable) that
specifies the amount of bytes that are reserved to headers of the pro-
grams. Note that if this member is modified, the post-modification
must be a multiple of the file alignment.

Section Table. It exists between the PE file header and sections,
which is a set of entries that indicates the characteristics of each
section of the program. The unmodifiable members in section table
are (i) member Characteristics, indicates each section is readable,
writable or executable and so on, and (ii) member SizeOfRawData,
as it is determined during compilation.

Sections. The sections area contains several components of
which are important to understand for malware analysis, with the
mostly commonly encountered being: (i) .text, contains the exe-
cutable component and is the only section with execute privileges
and to contain resident code [36]. (ii) .rdata, contains the import and
export information. (iii) .data, contains the global data required by
the program. We consider all sections unmodifiable except unused
bytes at the end of each section, known as code caves [8].

2.2 Target Systems
Here, we describe recent modes for static malware detection, the
first two of which use convolutional neural networks and Gradient
Boosting Decision Tree algorithm respectively. In addition to these
two learning-based malware detectors, we also introduce prevalent
commercial anti-virus software workflow. Despite most of which
are black-box to us, their detection mechanism underlying AV en-
gines are transparent. While they share common design concepts,
they differ in their overarching architecture and, as we will see, this
difference is the key to their respective robustness to the various
mutated malware attacks described in this article.

EMBERA gradient-boosted tree ensemble model provided along
with the EMBER dataset [37]. EMBER utilizes 2381 hand-engineered
features derived from the LIEF [38] PE parsing library, including
header properties, exports, byte-entropy histograms, and strings.
With a diverse set of semantically meaningful static features, it

MalwareTotal: Exposing Weakness of Real-World Anti-virus Software via a Black-Box Adversarial Attack Conference’17, July 2017, Washington, DC, USA

provides an excellent baseline in static malware detection and helps
demonstrate the gap between the features learned by byte-based
convolutional neural networks and those created by experts.

MalConv This model [25], is a convolutional neural network
that produces an 8-dimensional embedding for each byte, which is
fed to two convolutional layers. The convolutional layer contains
128 filters with a stride and size 500, iterating over non-overlapping
windows of 500 bytes each. Then a global max pooling is applied to
select the a 128-dimensional feature with the largest-activation. Re-
sult is then used as the input to a fully connected layer for malware
classification. MalConv provides an end-to-end malware detection
method without any artificial feature engineering. Concurrent to
our work, we notice that the enhanced model MalConv2 [39] is
proposed. Considering that the refinement of MalConv2 mainly im-
proves the detection time efficiency, which is not the main concern
of our intention. Thus, we decide not to alter the original MalConv
in our experiments.

Commercial AVs. The earliest, simplest, and fastest way of
detecting is the signature-based method [40], which is still widely
applied today. Antivirus software companies first obtain large-scale
malware, then design a signature extraction method by anti-virus
experts. A signature refers to data that can uniquely identify the
file, for example, Extracting MD5 of the malware can be a simple
way or a string that only exists in the file. However, this one-to-one
mode is rigorous for storage space and can not match mass malware
growth, anti-virus producers such as Cylance [41] and Avast [42]
begin to incorporate neural networks in identifying never-before-
seen malware.

The robustness of the malware detection model MalConv has
been extensively studied by previous work and adversarial attacks
have shown success [24, 26]. As pointed out by Suciu et al. [43], the
lack of robustness in those models may be strongly tied to its weak
notions of spatial locality among the learned features—meaning
that the location of the injected adversarial noise does not matter
as long as the activation on the noise bytes overwhelms those from
the actual binary. Even the GBDT model has been shown to be
vulnerable to evasion attacks [44, 45], albeit with more advanced
and computationally-intensive attacks. While each of these models
has been previously evaluated in an ad hoc manner, we are the
first to treat attacks on machine-learning models and commercial
AVs in a holistic manner with a unifying framework, and in doing
so we uncover a novel mutated malware generation method that
applies to both model-based and model-free AVs despite the unique
architectural differences between them.

3 THREAT MODEL
Before introducing the proposedmethod, we formulate the malware
variant generation problem from the perspective of the generation
goal and examiner’s capabilities:

3.1 Generation Goal
Given a malware detector 𝑓 (·), an input malware 𝑥 ∈ X, we create
a set of manipulating actionsA, the desired goal can be formulated

as:
argmin

𝛿

J (𝑓 (𝑥), 𝑓 (𝑥 + 𝛿))

𝑠 .𝑡 .𝑓 (𝑥) ≠ 𝑓 (𝑥 + 𝛿)
𝛿 ∈ A, F (𝑥) = F (𝑥 + 𝛿),

(1)

where the objective function J (·) indicates the detected result dif-
ferences between malware and its variant, F (·) represents the func-
tionality evaluation function of the given malware, which should
remain the same after manipulations, the ultimate goal is to find a
minimal action 𝛿 that could be single manipulation or sequential
manipulations drawn from the created action set A to bypass the
given malware detector.

3.2 Examiner’s Capabilities
We focus on robustness examination in the context of static PE
malware detection, which generally confines the examiner by ma-
nipulating malware in the test phase, where the malware detector
training phase is held fixed, and preserving the malicious func-
tionality. Note that the terminology of learning-based detector and
academical detector are used interchangeably, referring to the open-
source objects to be examined by different malware variant genera-
tion methods.

Without loss of generality, there are three possible examination
scenarios: white-box, grey-box, and black-box. In a white-box sce-
nario, an examiner has full knowledge about the target system (e.g.
the dataset, the feature extraction method, the learning algorithm,
etc.), which appears less feasible in the context of anti-virus ven-
dors. In a black-box scenario, an examiner has no prior knowledge
except the detected label. The grey-box scenario resides in between.
We consider a broad range of prevalent malware detectors, which
are categorized into four categories: (i) academic detectors that are
proposed by researchers but have not been publicly applied to the
real-world anti-virus product yet. (ii) commercial AVs and (iii) inte-
grated online AV service. For academic detectors, we examine their
robustness under a grey-box scenario since the label and malicious
confidence are both accessible, and we conduct other robustness
examinations under a strict black-box scenario.

4 METHODOLOGY
In this section, we present the functionality-preserving malware
variants generation framework, namely MalwareTotal (the contrary
of the integrated anti-virus tool ViursTotal). To extensively examine
the mutated malware detect ability of static malware detection, it
is important to address the following challenges:

• Challenge 1: How to mutate outdated malware so that can
bypass heterogeneous malware detectors?

• Challenge 2: How to fully preserve the functionalities of
mutated malware?

• Challenge 3: How to efficiently inject various content into a
PE malware?

To address these challenges, we design MalwareTotal, which in-
corporates four key modules, as shown in Fig. 1. The Reinforcement
Learning environment measures the victim anti-virus software to
acquire attack-related parameters including scanning results and
malicious confidence. The Reinforcement Learning action space
generates specific manipulation that can be injected into the input

Conference’17, July 2017, Washington, DC, USA

malware. The Reward module converts a desired malware vari-
ant generation into an iterative optimization by reporting a timely
reward that specifies the reaction of each manipulation. The re-
inforcement learning agent coordinates the scanning results of
the victim AV and the timely reward with selected manipulation
sequence to launch variant generation.

4.1 Functionality-preserving Modification
In dealing with Challenge 1 & 2, here we first discuss possible
functionality-preserving manipulations in the context of Windows
PE file format. In principle, there are more than a hundred modifica-
tions that can be applied to the input malware. We categorize them
as header, section, overlay and compound manipulations. During
the functionality test of possible modifications, we found not all
modifications are infeasible due to different latent constraints, as
detailed below.

HeaderManipulations. In a 64-byte-longDOSHeader, all bytes
are modifiable except e_magic and e_lfanew, and all bytes in DOS
stub are likewise since it won’t execute on systems above win32.
Theoretically speaking, DOS Stub can be extended to any length,
but we find arbitrarily modify DOS Stub arousing files to crash due
to an unannounced upper limit at 6*file alignment, besides, there
are 3 members in NT File Header and 5 members in NT Optional
Header can theoretically be modified arbitrarily, but we find only
6 of them are conditionally modifiable, where member MajorLink-
erVersion optional value are 2, 6, 7, 9, 11, 14; MinorLinkerVersion
optional value are 0, 16, 20, 22, 25; MajorOperatingSystemVersion
optional value are 4, 5, 6, 10;MinorOperatingSystemVersion optional
value are 0, 1, 3; MajorImageVersion optional value are 0, 1, 5, 6, 10;
MinorImageVersion optional value are 0, 1, 3. Thus, we conclude
following manipulations:

Manipulation 1: Extend the DOS Stub by one file_alignment
(at large 6*file_alignment) and inject random bytes.

Manipulation 2: Set the member CheckSum in Optional Header
to zero.

Manipulation 3: Change the member TimeDateStamp in File
Header to a int value by random selection that can be zero or any
datetime after 1970-1-1.

Manipulation 4 : Set the IMAGE_DIRECTORY_ENTRY_DEBUG
member in Optional Header to zero.

Manipulation 5: Modifiy the MajorLinkerVersion, MinorLink-
erVersion, MajorOperatingSystemVersion, MinorOperatingSystemVer-
sion, MajorImageVersion, MinorImageVersion to aforementioned val-
ues respectively.

Manipulation 6 : Zero out the certification in the optional
header, if the input malware has a certificate.

SectionManipulations.This portion is related to section adding,
shifting or modifying. Some manipulations have been explored in
concurrent work (detailed below), our augmentation focuses on
two aspects: (i) functionality: We find that previous implementation
does not check the upper limit when inserting a section; (ii) inject
content: Most manipulations inject random bytes and we refine it
by injecting benign content.

Manipulation 7: Rename a section by randomly selecting a
section name extracted from benign binaries.

Manipulation 8: Import a library that never been called. This
is a prevalent manipulation, since the imported library can be ar-
bitrary, and has been applied in [9, 24, 28, 46]. However, we find
former implementation break functionality occasionally due to an
unsafe PE parsing library i.e. Lief [38], we rewrite this function
with a safer library PeFile [47] to avoid breaking the functionality.

Manipulation 9: Import a library and create a section to call
the imported library. Calling a newly imported library requires
modifying the relative virtual address (RVA) and extending its size,
moreover, the technical implementation can be injecting a library
by adding an appropriate entry to the Import Address Table (IAT), as
[46] has done. However, this implementation does not consider the
case that IAT does not contain enough space to import a new library,
which is functionality-breaking. Thus we implement manipulation
8 by creating a section to overwrite IAT and Import Name Table
(INT), ensuring that there will be enough space when importing a
new library.

Manipulation 10: Create a section and inject content extracted
from benign binaries’ sections, if there is enough space to insert.

Manipulation 11: Create a section and inject content, similar to
manipulation 10, but the content is extracted from benign binaries’
strings.

Manipulation 12: Inject bytes in unused space in a section.
Note that this is the sole manipulation explored in [8], but instead
of injecting random bytes, the content injected in manipulation 12
is extracted from benign binaries’ sections.

Manipulation 13: Inject benign content before the first section,
to preserve functionality, the injected bytes must be an integral
number of file alignment.

Overlay Manipulations. Appending data in overlay theoreti-
cal won’t break functionality, since overlay will not be reflected to
memory. Note that directly overwriting the original overlay will
arouse crashing, particularly, when malware is made from the Null-
soft Scriptable Install System (NSIS), or other tools with integrality
checking, appended bytes will cause a function alert, which blocks
the program from executing, but this can be solved by adding a
/NCRC execution prefix.

Manipulation 14:Append random bytes to input malware over-
lay.

Manipulation 15: Append benign content extracted from a
random benign binary’s .text section to input malware overlay.

Manipulation 16: Append benign hexadecimal data extracted
from a random benign binary to input malware overlay.

Manipulation 17: Append ASCII code converted from strings
extracted from a random benign binary.

Compound Manipulations. This portion is related to header,
section and overlay ensemble modifications. Considering single
manipulation could be query-consuming, we thus conduct sev-
eral compound manipulations derived from different manipulation
granularity. For manipulations whose inject content is discrete, we
inject random bytes, and for manipulations whose inject content is
continuous and numerous, we inject bytes extracted from benign
binaries.

Manipulation 18: Change all modifiable bytes in DOS Header,
DOS Stub, Optional Header, and Section Table to random bytes.

Manipulation 19: Alter 58 modifiable bytes in DOS Header to
random bytes.

MalwareTotal: Exposing Weakness of Real-World Anti-virus Software via a Black-Box Adversarial Attack Conference’17, July 2017, Washington, DC, USA

Target Model

Ember

Academic AVs

MalConv

Integrated AVs

Virus

Total

Preprocessing

Dataset

10240 Malicious

PE Files

8192

PE Files

2036

PE Files

Test

Set

… …

Training

Set

Actor Critic

…

24 Discrete Actions

Instruction Space Overlay Space

Compression

Encryption

Input

Featur
es

Modified

Malware

I

Input Features

…

…

… … …

𝑉𝑛1 𝑉𝑛2 𝑉𝑛𝑛

𝑉𝑚1 𝑉𝑚2 𝑉𝑚𝑛

Feature

Extraction

Observation

Guiding Selection

Guided Modification

Reward

False Negative

Samples

Attack Evaluation

Attack Success Rate

Functionality Analysis

Transferability Analysis

Header Space

Section Padding

Section Renaming

Section Space

Commercial AVs

AV1 AV3

…

…

Proximal Policy Optimization

…𝑉11 𝑉12 𝑉1𝑛

…𝑉21 𝑉22 𝑉2𝑛

…𝑉31 𝑉32 𝑉3𝑛

………

VirusShare VirusTotal

Instruction Reordering

Bin Injection

Benign Injection

String Injection

Section Counterfeiting

Ablation Analysis

File Size Efficiency

Query Efficiency

Mutator Performance

File Header Imitation

NT Header Imitation

DOS Header Imitation
……

… …

AV1

AV2

…

AV3

AV 73

Figure 1: An overview of proposed MalwareTotal, a black-box attack for static PE malware detection.

Manipulation 20: Alter modifiable bytes in DOS Header and
DOS Stub to random bytes.

Manipulation 21: Conduct ensemble header manipulations i.e.
manipulations 1 to 6.

Manipulation 22: Conduct ensemble sectional manipulations
i.e. manipulations 7 to 12.

Manipulation 23: Compress and encryption the input malware,
also refers as instruction reordering [12] or code randomization
[48]. Utilizing a packer is an intuitive choice in evading anti-virus
detection, and has been explored in existing attacks [44, 46, 48, 49].
Besides, [46] has evidenced that sole packing is insufficient to evade
detection, nevertheless, the effect of packing on functionality and
evasion has not been fully discussed, we demystify this effect as
well as partially correct conclusions drawn by prior research in
Section V.

4.2 Malware Variant Generation Optimization
To solve Challenge 3 as well as the problem proposed in equation 1,
we model the problem as a Markov Decision Process (MDP) which
contains five components: (I) a finite set of states S, where each
state 𝑠𝑡 (𝑠𝑡 ∈ 𝑆) refers to the state of the agent at the timestep t. (ii) a
discrete action setA, where each action 𝑎𝑡 (𝑎𝑡 ∈ A) represents the
action of an agent at the timestep t. (iii) the transition probability
P (𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡) represents the probability that the agent transits
from state 𝑠 (𝑡) to 𝑠 (𝑡+1) by taking action 𝑎𝑡 . (iv) a reward function
𝑅(𝑠𝑡 ;𝑎𝑡) denotes the expected reward if the agent takes action 𝑎𝑡 at
state 𝑠 (𝑡) ; (v) a scalar discount factor 𝛾 ∈ [0, 1] where lower values
place more emphasis on immediate rewards.

With theMDP above, the ultimate goal of this model is to train an
agent to find an optimal policy that could maximize the expectation
of the total rewards over a sequence of manipulations selected,
denoted as:

𝜋∗ = argmax
𝜋
E[𝑅 | 𝜋], (2)

mathematically, this could be accomplished by maximizing state-
value function 𝑉𝜋 (𝑠) defined as:

𝑉𝜋 (𝑥) = E
{ ∞∑︁
𝑡=0

𝛾𝑡𝑟𝑡+1 | 𝑥0 = 𝑥, 𝜋

}
, (3)

or could be solved by action-value function defined as:

𝑄𝜋 (𝑥, 𝑎) = E
{ ∞∑︁
𝑡=0

𝛾𝑡𝑟𝑡+1 | 𝑥0 = 𝑥, 𝑎0 = 𝑎, 𝜋

}
. (4)

The state-value function describes how good a state is for an agent
to be in, and the action-value function indicates how good it is for
an agent to conduct the action a while being in the state s. To learn
a policy network for an agent, the policy gradient algorithm defines
an objective function 𝐽 (𝜃) = E𝑠0,𝑎0,...∼𝜋𝜃

[∑∞
𝑡=0 𝛾

𝑡𝑟 (𝑡)
]
which is

the expectation of the entire discounted rewards, and in order to
obtain parameters 𝜃 , the policy gradient iteratively applies stochas-
tic gradient-ascend to find a local maximum in 𝐽 (𝜃). On the basis
of [50], for any differentiable policy 𝜋𝜃 (𝑠, 𝑎), the policy gradient
can be denoted as:

∇𝜃 𝐽 (𝜃) = E𝜋𝜃
[
∇𝜃 log𝜋𝜃 (𝑠, 𝑎)𝑄𝜋𝜃 (𝑠, 𝑎)

]
. (5)

Conference’17, July 2017, Washington, DC, USA

By approximating 𝑄𝜋𝜃 through a deep neural network and taking
the action with the highest Q-value, one could maximize cumulative
reward and obtain an optimal policy 𝜋∗ for an agent to generate
malware variants, as has been done in [17]. However, this optimiza-
tion suffers inefficient sampling and over estimation resulting in
time-consuming. To address the above limitation, recent research
introduces an advantage function, which measures the difference
between the Q value for action a in state s and the average value of
that state [51], denoted as:

∇𝜃 𝐽 (𝜃) = E𝜋𝜃
[
∇𝜃 log𝜋𝜃 (𝑠, 𝑎)𝐴𝜋𝜃 (𝑠)

]
,

𝐴𝜋𝜃 (𝑠, 𝑎) = 𝑄𝜋𝜃 (𝑠, 𝑎) −𝑉𝜋𝜃 (𝑠).
(6)

Through this advantage function, one can acquire an augmentation
over the average action taken at the current state during malware
variant generation, as has been done in [9]. Nevertheless, recent
research indicates that the actor usually experiences enormous
variability which influences the performance of the trained agent
[52]. Therefore, we introduce Proximal Policy Optimization (PPO)
Algorithm in this work, which utilizes importance sampling to
achieve asynchronous sampling and adaptive KL-divergence to
stabilize the agent training. As discussed in [33], the original form
of the PPO objective function is denoted as:

maximize𝜃 E(𝑎𝑡 ,𝑠𝑡)∼𝜋𝜃old

[
𝜋𝜃 (𝑎𝑡 | 𝑠𝑡)

𝜋𝜃old (𝑎𝑡 | 𝑠𝑡)
𝐴𝜋𝜃old

(𝑎𝑡 , 𝑠𝑡)
]

s.t. E𝑠𝑡∼𝜋𝜃old
[
𝐷KL

(
𝜋𝜃old (· | 𝑠𝑡) ∥𝜋𝜃 (· | 𝑠𝑡)

)]
≤ 𝛿

(7)

where 𝜋𝜃𝑜𝑙𝑑 is the old policy obtained from off-policy sampled
distribution. 𝐷𝐾𝐿 (𝜋𝜃𝑜𝑙𝑑 | |𝜋𝜃) refers to the KL-divergence between
distribution 𝜋𝜃𝑜𝑙𝑑 and 𝜋𝜃 .𝐴𝜋𝜃old represents the advantage function
in Equation (6). By solving Equation (7), the new policy 𝜋𝜃 can be
obtained. Note that in actual implementation, PPO does not require
an additional neural network to approximate action-value function,
cause it is deduced by replacing the KL-constrained with a clipped
objective function:∑︁

(𝑠𝑡 ,𝑎𝑡)
min(𝜋𝜃 (𝑎𝑡 | 𝑠𝑡)

𝜋𝜃old (𝑎𝑡 | 𝑠𝑡)
𝐴𝜋𝜃old (𝑠𝑡 , 𝑎𝑡),

clip
(
𝜋𝜃 (at | st)
𝜋𝜃old (at | st)

, 1 − 𝜀, 1 + 𝜀

)
A𝜋𝜃old (st, at))

(8)

where 𝑐𝑙𝑖𝑝 (·, 1 − 𝜖, 1 + 𝜖) denotes clipping the output to the range
of [1− 𝜖, 1+ 𝜖], in case an excessive variance between 𝜋𝜃old and 𝜋𝜃 .

Furthermore, reward function and environments are required to
calculate state and reward transmission. As discussed in [25, 37], we
utilize a 2381-dimensional vectorized environment for examining
Ember and a 1024×1024 box environment for MalConv. As for
commercial AVs, we inherit Ember vectorized environment due to
more robust posterior performance. The reward function is divided
into ML-Detector and Commercial AVs as well, for the former: (i)
the reward equals 𝛽 when the malware variant bypasses the target
detector; (ii) the reward is zero if themalware variant does not evade
when the terminal hits; (iii) the reward is equal to the difference
between the initial malicious score and in-process score. Due to
the fact that the malicious score in examining commercial AV is
inaccessible, thus the reward function for the latter only contains
the first two components.

5 EVALUATION
In this section, we first provide a comprehensive understanding
of MalwareTotal where we test the performance of the proposed
attack under machine-learning malware detectors and commercial
AV products. After that, we showcase aMalwareTotal transfer attack
performance on an integrated commercial malware scanner to show
the superiority of ourmethod in producing false negative detections.
Below, we first present our experiment setup. Then, we discuss
the design of our experiment, and evaluate the performance of
MalwareTotal by answering the following four research questions.

• RQ1: Effectiveness analysis. How the effective is MalwareTo-
tal against the state-of-the-art learning-based and commercial mal-
ware detectors?

• RQ2: Mutation efficiency comparisons. Compared with
other mutated malware generation methods, how is the mutation
efficiency of MalwareTotal?

• RQ3: Transferability assessment. Can mutated malware
generated by MalwareTotal also evade other detectors?

• RQ4: Explainability Exploration. Can we gain valuable
experience through evaded malware?

5.1 Target AVs, Data & Benchmarks
We now illustrate our experimental setup and target state-of-the-art
malware detection techniques that are well-cited in academia or
provided by premier anti-virus companies:

Detector 1: Ember, a GBDT-based malware detector, is intro-
duced in Section II. We use the trained model in SEC-ML [53], with
a malicious threshold of 0.8336, corresponding to a False Positive
Rate (FPR) of 0.039 and a True Positive Rate (TPR) of 0.95.

Detector 2: MalConv, a convolutional malware detect model,
While the original MalConv model considers a maximum input
file size of 2MB, the model used in our experiments relies on the
reproduction in ToucanStrike [54] which is trained on the EMBER
dataset with a maximum input file size of 1 MB. Files exceeding
the maximum allowable size are truncated, while shorter files are
padded using a special padding token separate from the standard
bytes in the file, with a malicious threshold of 0.5, leading an FPR
of 0.035 and a TPR of 0.69.

Detectors 3-5: Commercial AVs, all of which are rewarded top-
rated in The best Windows antivirus software for home users 2022
by AV-Test [55]. We believe this selection stands for an advanced
anti-virus detection ability.

Detector 6: VirusTotal [56], an online AV scanner, integrates
over 70 AV products for PE malware detection.

In examining machine-learning AVs and commercial AVs, we
evaluate the MalwareTotal performance with an attack success
rate (ASR), queries, file size, time consumed, and functionality,
comparing with broadly existing methods. Here, ASR refers to the
ratio of mutated malware that is classified as benign in all mutations.
Queries indicate the total amount of calling anti-virus detectors
during generation. The file size is the average of post-modification
malware size, showing how many bytes are injected during the
generation.

We investigate prevalent datasets in malware detection includ-
ing Sorel-20M [57], MS BIG 2015 [58], most of which only release

MalwareTotal: Exposing Weakness of Real-World Anti-virus Software via a Black-Box Adversarial Attack Conference’17, July 2017, Washington, DC, USA

preprocessed features. Since the functionality evaluation is essen-
tial for mutated malware, we mainly adopt two malware datasets:
VirusShare [59] and VirusTotal Academic share [60], which pro-
vide the original malware samples, we randomly collect 8192 PE
malware for training and 2036 for testing. To guarantee the quality
of samples, all collections are identified as malware both by EMBER
and MalConv.

We implement MalwareTotal using PyTorch 1.8.2 and stable-
baselines3 [61], in particular, to manipulate PE files, we rely on
PEfile [47], which is based on python 3.6.2. We run all our experi-
ments on a windows server configured with a 2.8 GHz Intel i5-8400
processor, 1×8G NVIDIA 1080 GPU and 32G memory.

5.2 RQ1: Effectiveness analysis
In our first experiment, we measure the attack performance of Em-
ber [37] and MalConv [25] detectors since they both are learning-
based and have been widely applied in recent research. We train
our agent with 8192 malware, with each malware having at most 3
episodes to reset the mutation environment, in each episode, the
agent has up to 30 steps, i.e. maximal 30 manipulations per sample.
Due to arbitrarily encrypting or compressing the malware during
mutationwill break the functionality, we thus conductManipulation
23 as the 31st, i.e. the final action during mutation, the optimization
terminates when the last sample in the training set is traversed.
Then we test and report the performance with the test set 2036
malware. Table 1 illustrates the performance of MalwareTotal when
facing the first two detectors (i.e. EMBER and MalConv). As we can
see, MalwareTotal achieves an effective evasion performance with
98.67% and 100% ASR against EMBER and MalConv respectively.
Note that the average file size of the test set is 315.8KB, andMalware-
Total increases average of 124.8 and 159.5 KB to create a mutated
malware that can bypass EMBER and MalConv respectively. To find
out the optimization ability of proposed MalwareTotal, we conduct
ablation experiments that replace the Proximal Policy Optimiza-
tion with Trust Region Policy Optimization [62], Advantage Actor
Critic [63], Deep Q-learning [64], but use the same MalwareTotal 23
actions (namely MT-TRPO, MT-A2C, MT-DQN respectively). We
also utilize a random agent which selects random actions during
mutation (i.e. no optimizer, namely MT-Random). Results show that
MalwareTotal achieves the best ASR both in EMBER and MalConv.
Although TRPO achieves slightly better file size and queries in
bypassing EMBER, it performs weaker in ASR and takes more than
10 hours to create mutations, while our method only takes less than
6 hours.

In experiment 2, we evaluate the performance of MalwareTotal
against commercial AVs, This is obviously a harder task due to:
(i) we can no longer gain prediction confidence since commercial
AVs only return binary scan results to users, this scenario is also
known as Hard-label Attack [46, 48]. (ii) commercial AVs contain a
huge malware signature cloud and determine with multi-module
detection technologies. In this experiment, we train and test Mal-
wareTotal with the same data used in experiment 1, besides, we
use the 2381-dimensional Ember environment as the substitute
commercial AV environment due to a better performance than the
MalConv environment in our fundamental performance test. In
addition, due to the optimization of MalwareTotal relies on the

iterative interaction with target AVs, we use the premier edition
of Detector 4-5, due to it is the only edition that provides the CMD
Scan Mode, we set the Scan sensitivity to medium in balance of scan
ability and time efficiency. Detector 3 directly provides the CMD
Scan Mode, and we scan mutations with the default setting. Results
are reported in Table 2. In our expectation, there should be a de-
cline in ASR and a rapid growth of queries. However, MalwareTotal
achieves 95.33%, 92.63%, and 98.52% ASR respectively, meaning that
with an experienced agent, tested AVs can be bypassed with an av-
erage of 156.26KB injected content with 21 average manipulations
at most.

To ensure that MalwareTotal fully preserves malicious func-
tionality, we conduct experiment 3, firstly, we ensure all original
malware is runnable and malicious through Cuckoo Sandbox [65]
with a 32-bit Window 7 virtual system, then we test the function-
ality of individual manipulations, we randomly select 50 malware
in our test set, and iteratively modify each malware from manipu-
lating once to manipulating 30 times to simulate the most extreme
situation in actual mutation, resulting in 33000 mutated malware,
and test their functionalities with Cuckoo, the result shows that
all malware behaviors are malicious. Moreover, to demonstrate
overlapped manipulations do not harm malware functionality, we
randomly select 200 mutated malware that has evaded from each
detector (i.e. 1000 malware in total) and validate their functionali-
ties with Cuckoo. Again, all tested samples are runnable and show
malicious functions in the sandbox. Through the two functionality
validations above, we believe it is safe to say that MalwareTotal is
functionality-preserving in mutating malware.

Answer to RQ 1: MalwareTotal achieves 100% ASR against Detec-
tor 1, 98.67% ASR against Detector 2, 95.33%, 92.63%, 98.52% ASR
respectively against Detector 3-5.

5.3 RQ2: Mutation efficiency comparisons
In experiment 3, we compare MalwareTotal on learning-based de-
tector (i.e. Detector 1-2) with latest work including Gamma [46],
MAB [48], Full-DOS [24], and so on. For Gamma MAB and Aimed
[17], we use the code released by the official, for other methods, our
reproduction relies on an integrated PE adversaries framework Tou-
canstrike [54], and we follow the original setting in each paper. All
comparisons are conducted on the same test set used in MalwareTo-
tal. Since most compared methods are heuristic, we repeatedly run
each experiment 3 times and report the average result in Table 3. We
can see from the result that MalwareTotal outperforms compared
method in ASR both in evading EMBER and MalConv, Although
MAB consumed fewer queries and less time than us, MalwareTotal
has huge advantages in ASR and file size. As for MalConv, Mal-
wareTotal achieves 100% ASR with the fewest time consumed and
queries. In experiment 4 and further experiments, considering com-
mercial AVs consume extreme time in scanning progress, we select
the Gamma Section as a comparison, which is well-performed both
in Detector 1 and Detector 2. The detectors are replaced with com-
mercial AVs, and mutated malware is iterative generated utilizing
Gamma Section. Unfortunately, as we can see from Table 2, Gamma
Section achieves only 36.11%, 17.33%, and 14.93% ASR respectively.
By contrast, MalwareTotal bypasses three commercial AVs with an

Conference’17, July 2017, Washington, DC, USA

Table 1: Effective of Malwaretotal Against Learning-Based Malware Detectors.

Methods EMBER MalConv
ASR(%) Queries File Size Time ASR(%) Queries File Size Time

MalwareTotal 98.67% 14028 440.6KB 5h48mins 100 4459 475.3KB 1h1min
MT-TRPO 96.22 11680 427.3KB 10h37mins 100 7239 473.63KB 1h50mins
MT-A2C 89.29 21106 577.6KB 2h17mins 97.24 15363 443.7KB 2h17mins
MT-DQN 59.38 24129 577.6KB 13h46mins 59.38 37838 494.9KB 60h21mins

MT-Mutator 87.28 18387 400.9KB 11h48mins 99.8 7187 483.44KB 1h57mins
MT-Random 62.13 38827 605.20KB 13h22mins 93.66 42267 527.1KB 11h16mins

Table 2: Comparisons Between Individual Attack Strategies and MalwareTotal Against Commercial Anti-virus Software.

Methods Commercial AV1 Commercial AV2 Commercial AV3
ASR Queries File Size Time ASR Queries File Size Time ASR Queries File Size Time

MalwareTotal 95.33 36491 466.70KB 45.9h 92.63 42756 472.06KB 52.2h 98.52 7240 341.5KB 24.0h
MT-Mutator 95.09 38012 464.40KB 70.7h 84.43 49190 472.98KB 54.7h 87.33 10997 472.98KB 38.8h
Gamma 36.11 61839 337.92KB 114.6h 17.33 61057 478.64KB 115.3h 14.93 53244 488.42KB 132.7h

MT-Random 40.57 51680 513.73KB 88.4h 23.87 61027 498.02KB 115.2h 66.10 59316 498.02KB 147.8h

extremely high ASR, Besides, as the scanning process of commer-
cial AVs usually takes seconds to minutes, an effective optimization
becomes prominent, as is reported in Table 2, MalwareTotal not
only takes 68.7, 63.1 and 108.7 hours less than Gamma Section, but
also injects less content in evading AV2 and AV3.

Answer to RQ2: MalwareTotal achieves the highest ASR in evad-
ing all detectors, and consumes the fewest time and queries in
evading all commercial AVs and MalConv.

5.4 RQ3: Transferability assessment
Due to the fact that adversarial examples show a strong transfer-
ability in computer version (CV) fields [66]. It is worthy to investi-
gate whether mutated malware transfers among malware detectors,
considering that many AVs do not claim to have deployed learning-
based detection technology.We thus conduct experiment 5, utilizing
5000 malware generated by MalwareTotal and Gamma respectively.
Each 500 malware has evaded an individual detector, for example,
500 malware generated by MalwareTotal which has evaded from
Detector 1 is denoted as MT-D1, 500 malware generated by Gamma
which has evaded from Detector 2 is denoted as Gamma-D2. Then
mutated malware is scanned by VirusTotal to examine the transfer-
ability. There are 73 anti-virus services integrated in VirusTotal, in
our experiments, 4 of which fail to return almost all results, there-
fore are excluded from our experiment. We report the overall and
segmented performance in Table 4, where the first row presents
the ASR calculated through the ratio of malware that is identified
as benign by 69 online AV scanners of all scanned results. The rest
rows illustrate the quantity of AVs that are bypassed with the corre-
sponding percentage. The results indicate that: (i) mutated malware
evaded from learning-based detectors shows a weaker transferabil-
ity against heterogeneous real-world AVs compared with mutated
malware evaded from commercial AVs. As the ASR of MT-D1 and
MT-D2 is much lower than MT-D3 to D5. (ii) MalwareTotal has
a better ability in exposing commercial AV vulnerabilities. When
results are tailored to commercial AVs mutations, MalwareTotal

bypasses 73 AVs in total with 90% ASR (i.e.the sum of the third
row in Table 4), while Gamma only bypasses 33 AVs. (iii) known to
date, MalwareTotal is the first method that achieves an average ASR
above 50% (especially 63.31% in MT-D3), revealing that the risks in
the robustness of static malware detection have been overlooked.

To further demonstrate the fragility of commercial AVs in detect-
ing MalwareTotal mutations is susceptible and extensive, we report
the ASR against 16 (out of 31) AVs that are rewarded top-rated in
The best Windows antivirus software for home users by AV-Test in
2022. Again, we emphasize that our work does not aim to compare
differences in AV product capabilities, but to evaluate the robustness
of AV products as a whole, thus all AV products are anonymized.
The results are reported in Table 5, among 16 awarded AV products,
only 2 of them are robust to both MalwareTotal and Gamma muta-
tions (i.e. AV 10 and AV 12). Note that the first three AV products are
same as AVs evaluated in experiment 2. Results show that the first
two AVs perform no resilience to transfer attacks as they classified
all mutations as benign. The ASR of the third AV product decays,
we assume the reason is the same as the work [67] discussed that
some anti-virus software provides different versions between the
local scanner and online scanner to VirusTotal, usually the online
scanner has a stronger ability in detecting malware.

Answer to RQ3: Transferability of mutated malware is extensive
in static malware detection whether the architecture of AV prod-
ucts is learning-based or not, as up to 63.31% tested detections in
VirusTotal is vulnerable to MalwareTotal mutations transfer attack.

5.5 RQ4: Explainability Exploration
To find out how and why mutated malware bypasses each malware
detector, we conduct experiment 6, designing amutator that directly
learns from reinforcement learning agent trajectories. By recording
the sequence of manipulations during each mutation, we calculate
the sequential frequency of each manipulation through malware

MalwareTotal: Exposing Weakness of Real-World Anti-virus Software via a Black-Box Adversarial Attack Conference’17, July 2017, Washington, DC, USA

Table 3: Comparisons Between Individual Attack Strategies and MalwareTotal Against Learning-Based Malware Detectors.

Methods EMBER MalConv
ASR Queries File Size Time ASR Queries File Size Time

MalwareTotal 98.67% 14028 440.6KB 5h48mins 100 4459 475.3KB 1h1min
Full DOS 3.97% 22968 1.18MB 3h22mins 47.84 38737 364.0KB 39h1min

Partial DOS 3.88% 20805 349.7KB 3h26mins 42.17 41907 335.0KB 17h45mins
Extend 3.98% 24367 321.4KB 5h45mins 59.87 34666 347.9KB 164h22mins
Shift 4.22% 25144 327.3KB 4h10mins 33.35 30789 274.0KB 75h22mins

Padding 4.03% 22968 263.7KB 3h40mins 20.68 30251 271.8KB 105h25mins
Header Fields 47.79% 19363 361.9KB 128h59mins 36.39 38984 306.0KB 30h44mins

GAMMA Section 74.26% 26738 490.9KB 6h25mins 83.45% 32295 474.0KB 5h12mins
GAMMA Padding 64.00% 26176 482.8KB 5h28mins 52.85% 28489 436KB 4h11mins

MAB 69.50% 10466 2.967MB 5h30mins 78.05% 8671 2.31MB 4h28mins
Aimed 47.79% 73642 560.5KB 19h13mins 67.58 73624 555.4KB 12h3mins

Table 4: ASR Comparisons Between Individual Attack Strategies and MalwareTotal Against VirusTotal.

Methods MalwareTotal Gamma Section
MT-D1 MT-D2 MT-D3 MT-D4 MT-D5 Gamma-D1 Gamma-D2 Gamma-D3 Gamma-D4 Gamma-D5

Avg ASR 35.67 34.38 63.31 59.46 57.53 36.88 33.49 38.80 45.07 43.81
AVs≥90% 10 9 29 29 15 14 12 12 11 10
AVs ≥80% 14 12 32 30 24 15 14 15 14 14
AVs ≥70% 16 15 34 32 36 18 16 17 20 17
AVs ≥ 60% 19 17 36 34 40 20 19 19 23 18
AVs ≥50% 21 20 41 39 41 25 23 22 26 26

Table 5: Comprasion Results of Transfer Attack Success Rate Against Integrated Malware Detector VirusTotal

MT-D1 MT-D2 MT-D3 MT-D4 MT-D5 Gamma-D1 Gamma-D2 Gamma-D3 Gamma-D4 Gamma-D5
AV1 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
AV2 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
AV3 63.38% 59.23% 84.00% 79.83% 79.59% 56.00% 56.00% 58.33% 71.43% 58.59%
AV4 19.09% 15.06% 95.83% 90.18% 97.87% 51.06% 46.94% 41.67% 78.35% 72.63%
AV5 11.96% 9.70% 56.00% 76.86% 58.00% 24.00% 20.00% 34.00% 34.00% 31.00%
AV6 18.30% 22.22% 98.00% 84.30% 98.00% 47.47% 40.00% 56.25% 70.41% 76.77%
AV7 11.99% 7.43% 90.00% 80.17% 90.00% 12.00% 6.00% 2.60% 47.00% 31.00%
AV8 40.82% 37.90% 100.00% 86.84% 95.45% 35.71% 32.65% 100.00% 74.23% 72.45%
AV9 10.36% 5.91% 72.00% 64.10% 67.35% 20.00% 10.00% 18.75% 43.88% 30.30%
AV10 0.19% 0.31% 0.00% 1.72% 0.00% 2.02% 0.00% 0.00% 5.21% 3.09%
AV11 18.41% 26.06% 98.00% 74.79% 100.00% 17.00% 12.00% 28.57% 37.37% 34.00%
AV12 2.57% 8.16% 4.17% 9.65% 18.75% 5.21% 4.17% 6.25% 1.51% 3.71%
AV13 8.46% 4.52% 96.00% 65.83% 100.00% 4.00% 2.04% 8.33% 13.26% 17.53%
AV14 12.64% 8.75% 100.00% 75.00% 100.00% 16.00% 6.00% 24.00% 38.00% 32.65%
AV15 24.12% 15.65% 100.00% 75.63% 100.00% 24.74% 10.42% 45.65% 42.27% 40.63%
AV16 36.31% 40.16% 100.00% 97.50% 100.00% 69.00% 52.00% 68.75% 85.00% 80.00%

mutation sequences that have bypassed each detector as the posi-
tive effect, as well as the negative effect (i.e. sequential frequency
of each manipulation from malware that episodically fails during
generation), then we add positive and negative effect and obtain
the episodic importance of each manipulation to a given detector.
Then we construct mutators that behave following the episodic
importance, to validate whether malware generated by mutators

can still bypass each detector. The second row in Table 2 illustrates
the results, all mutators achieve a decayed ASR of about 10% except
MalConv, with the consequence of increasing queries and running
time. Indicating that (i) the episodic importance is effective in by-
passing each detector since ASR achieves 87.28%, 99.8%, 95.09%,
84.43% and 87.33% respectively. (ii) different malware detectors are
vulnerable to different manipulations, for EMBER, the first three

Conference’17, July 2017, Washington, DC, USA

manipulations utilized most frequently are manipulation 15, 5, 22.
As for MalConv, frequent manipulations become manipulation 16,
18, 1, which matches the conclusion that MalConv is sensitive to
features in the PE header and can be bypassed by appending bytes
in overlay [26]. For commercial AVs, Detector 3 is vulnerable to
manipulation 15, 4, 21 well Detector 4 and 5 is fragile to manipula-
tion 22, 12, 9 and 9, 22, 2 respectively. (iii) training an experienced
agent is necessary cause it not only learns the vulnerability of each
malware detector but also learns which manipulation to take when
facing different malware due to an average 6.19% decay in ASR and
an increment in file size and queries.

Answer to RQ4: Mutators are effective in bypassing detectors,
with an average 6.19% decay in ASR and an increment in file size
and queries. Besides, different detectors are vulnerable to different
manipulations.

6 DISCUSSION
6.1 Obfuscation
It could be doubted that traditional obfuscation methods can sim-
ply hide malicious functionality. On the one hand, [68] has shown
that machine learning-based PE malware detection techniques are
able to detect malware packed with known packers. On the other
hand, the explainability exploration shows that frequently used
manipulations do not contain packing, besides, we conduct another
ablation experiment on Detector 1 that removes the packing manip-
ulation, MalwareTotal achieves 96.49% ASR, which is close to the
98.67% ASR performance with packing technique, i.e. although our
manipulations contain a packer, packing is not the core factor that
MalwareTotal bypasses varieties of anti-virus software. Moreover,
the novel mutated malware generation method MalwareTotal in
this work demonstrates the feasibility of the “producing statically
undetectable PE malware as a service” scenario. As far as we know,
the process of malware mutation does not leave any artifact and,
the high ASR of MalwareTotal in each detector indicates that the
AV-oriented attack has become reality with little esoteric knowl-
edge required. At last, although manipulations 1-22 and packing
differ in affecting PE file components. In the code transplantation
domain [69], MalwareTotal can be seen as a tool for developing
new forms of obfuscation.

6.2 Potential Mitigation
Our study exploits the vulnerabilities of malware detection tech-
niques both in machine learning algorithms and commercial AVs.
Through manipulating the PE file, MalwareTotal ultimately affects
commercial AV software decisions. In this subsection, we provide
several potential defense mechanisms by increasing the difficulty
of launching our attacks: (i) Adding extra semantic comparing
techniques in static malware detection, such as binary similarity
detection techniques [70], which have achieved a significant ac-
curacy with a valid time-efficiency in recent research. Due to the
functionality-preserving constraint of MalwareTotal, modifications
hardly change the embedding in semantic representation. (ii) Ad-
versarial Training [71], adversarial robustness has been a long-term
hotspot to machine learning services, and adversarial training is
an effective method to known attack through retraining the model
with adversarial examples (i.e. mutated malware in our case) added

into the training set. Once the MalwareTotal is published, utilizing
adversarial training will help decrease the false negative detection
(i.e. mutated malware that is wrongly detected as benign) in their
learning-based detection modules. To prevent the potential damage
that may arouse to AV producers and Windows users, we have
uploaded our mutated malware to many anti-virus software pro-
ducers could including WinDefender [72], ESET NOD [73], Avast
[42], VirusTotal [56] and so on.

6.3 Limitations
Our method still has the following limitations at present. First, we
have successfully attacked static anti-virus software but have not
succeeded on dynamic anti-virus software with virtual technol-
ogy yet. We assume that our attacks can also be applied to bypass
dynamic AVs by incorporating the anti-debug manipulations e.g.
checking hard disk temperature through WMI API [74]. We re-
main it as the future work. Second, though we have addressed
the functionality issue for physical attacks to some extent by care-
fully writing and testing the individual manipulations, it is still
challenging to fully prevent a commercial packer from breaking
malware functionalities especially when the original malware has
already been packed by an unknown packer. We have contacted
a commercial packer producer and helped fixing a few cases that
broke malware functionality during MalwareTotal functionality
experiments, but we believe the duty of ensuring the commercial
packer functional completeness is outside the scope of our work.

7 RELATEDWORK
Preceding work is significantly different from MalwareTotal, as it
designs attacks from the perspective of adversarial attack, which
naturally can be categorized into three schemes:

White-box attack: As introduced in Section III, white-box attacks
mostly rely on the full target information including model gradient,
output score and so on. Particularly, Kolosnjaji et.al [75] manipu-
lates malware through padding embedding value at the overlay of
PE file guided by the positive direction of the gradient, the experi-
ment is conducted on MalConv detector and achieves 60% attack
success rate with an average of 10000 bytes modified per malware.
Later, [27] enhanced the padding manipulations by padding in sec-
tion unused space and overlay, and replaces the optimizer with
an iterative variant of the fast gradient sign method (FGSM) [76],
a simple but effective optimization firstly proposed in image ad-
versarial attack. [26] manipulates 58 bytes in a DOS header (from
MZ to the offset to PE header), guided by an introduced integrated
gradients method, known as Partial DOS.

White & black-box attack: Header Fields [28] and Full DOS [24]
can be applied both in white-box or black-box scenarios, where
white-box optimization relies on the gradient and black-box op-
timization is guided by a genetic algorithm. Particularly, Header
Fields manipulates names of each section in Optional Header, and
Full DOS proposes three individual attacks namely Full DOS, Extend,
Shift, where Full DOS manipulates 58 bytes in the DOS header and
the whole DOS stub, Extend enlarges the DOS header and injects
adversarial content, Shift injects content before the first section.

Black-box attack: In this scenario, Demetrio et. al [46] proposes
two individual attacks, one ofwhich conductsmanipulations through

MalwareTotal: Exposing Weakness of Real-World Anti-virus Software via a Black-Box Adversarial Attack Conference’17, July 2017, Washington, DC, USA

a set of manipulations in section and a packer, they name this
methodGamma Section, the other attack is a combination of padding,
partial DOS, extend, shift, their manipulation optimization relies on
a genetic algorithm. Similarly, [48] also utilizes a packer as well as
a set of manipulations and uses a multi-armed bandit (MAB) as the
optimizer, which requires 20 servers to conduct manipulations in
their experiments. Aimed [17] minimizes the malware score with
the same manipulations used in Header Fields, but Aimed utilizes a
genetic algorithm to optimize the chain of manipulations, then they
use a sandbox to discard malware whose functionality is broken.

Without loss of generality, Manipulations in previous work focus
only on a partial PE file structure (i.e. DOS Header, Section or
Overlay), but our work manipulates malware in a whole view of PE
file structure. Besides, the perceptibility of the above methods relies
on either the model gradient or the score of malware predicted by
a detector, which is less feasible when facing commercial AVs, as
we detailed in section I.

8 CONCLUSION
Unlike adversarial attacks in the computer version domain, where
evading ML-based classifiers is in itself a meaningful and eloquent
result, this is not sufficient for robustness examination in malware
detection. Considering that malware variants continue to be one of
the most pressing security issues that users face today, it is crucial
to explore how malware variants bypass heterogeneous anti-virus
software. Thus we propose MalwareTotal, a malware variant gener-
ation framework that includes 23 functionality-preserving malware
manipulations whose perturbation sequences are guided by proxi-
mal policy optimization. We show MalwareTotal outperforms the
existing state-of-the-art approaches while decreasing the bypassing
cost, generalizing across different malware detectors, and exploring
realistic operational settings.

We envision this work will enable researchers and practitioners
alike to leverage those malware manipulations to build rejection
strategies to improve their static malware detection software. To
this end, we release our implementation of MalwareTotal, making
evaluation available to the community for the first time.

REFERENCES
[1] SonicWall. Sonicwall’s cyber threat report, 2022.
[2] M Satheesh Kumar, Jalel Ben-Othman, and KG Srinivasagan. An investigation on

wannacry ransomware and its detection. In 2018 IEEE Symposium on Computers
and Communications (ISCC), pages 1–6. IEEE, 2018.

[3] Deqiang Li and Qianmu Li. Adversarial deep ensemble: Evasion attacks and
defenses for malware detection. IEEE Transactions on Information Forensics and
Security, 15:3886–3900, 2020.

[4] Yanfang Ye, Tao Li, Donald Adjeroh, and S Sitharama Iyengar. A survey on
malware detection using data mining techniques. ACM Computing Surveys
(CSUR), 50(3):1–40, 2017.

[5] Deqiang Li, Qianmu Li, Yanfang Ye, and Shouhuai Xu. Arms race in adversarial
malware detection: A survey. ACM Computing Surveys (CSUR), 55(1):1–35, 2021.

[6] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In
2nd International Conference on Learning Representations, ICLR 2014, 2014.

[7] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik,
and Ananthram Swami. Practical black-box attacks against machine learning. In
Proceedings of the 2017 ACM on Asia conference on computer and communications
security, pages 506–519, 2017.

[8] Javier Yuste, Eduardo G Pardo, and Juan Tapiador. Optimization of code caves in
malware binaries to evade machine learning detectors. Computers & Security,
116:102643, 2022.

[9] Zhiyang Fang, JunfengWang, JiaxuanGeng, Yingjie Zhou, and Xuan Kan. A3cmal:
Generating adversarial samples to force targeted misclassification by reinforce-
ment learning. Applied Soft Computing, 109:107505, 2021.

[10] Weiwei Hu and Ying Tan. Black-box attacks against rnn based malware detection
algorithms. In Workshops at the Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[11] Raphael Labaca-Castro, Battista Biggio, and Gabi Dreo Rodosek. Poster: Attacking
malware classifiers by crafting gradient-attacks that preserve functionality. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, pages 2565–2567, 2019.

[12] Keane Lucas, Mahmood Sharif, Lujo Bauer, Michael K Reiter, and Saurabh Shintre.
Malware makeover: breaking ml-based static analysis by modifying executable
bytes. In Proceedings of the 2021 ACM Asia Conference on Computer and Commu-
nications Security, pages 744–758, 2021.

[13] Fangwei Wang, Guofang Chai, Qingru Li, and Changguang Wang. An efficient
deep unsupervised domain adaptation for unknown malware detection. Symme-
try, 14(2):296, 2022.

[14] Aparna Sunil Kale, Vinay Pandya, Fabio Di Troia, and Mark Stamp. Malware
classification with word2vec, hmm2vec, bert, and elmo. Journal of Computer
Virology and Hacking Techniques, pages 1–16, 2022.

[15] Nureni Ayofe Azeez, Oluwanifise Ebunoluwa Odufuwa, Sanjay Misra, Jonathan
Oluranti, and Robertas Damaševičius. Windows pe malware detection using
ensemble learning. In Informatics, volume 8, page 10. MDPI, 2021.

[16] Daniel Park and Bülent Yener. A survey on practical adversarial examples for
malware classifiers. In Reversing and Offensive-oriented Trends Symposium, pages
23–35, 2020.

[17] Raphael Labaca-Castro, Sebastian Franz, and Gabi Dreo Rodosek. Aimed-rl:
Exploring adversarial malware examples with reinforcement learning. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases,
pages 37–52. Springer, 2021.

[18] James Scott. Signature based malware detection is dead. Institute for Critical
Infrastructure Technology, 2017.

[19] Raphael Labaca Castro, Corinna Schmitt, and Gabi Dreo Rodosek. Armed: How
automatic malware modifications can evade static detection? In 2019 5th In-
ternational Conference on Information Management (ICIM), pages 20–27. IEEE,
2019.

[20] Yanchen Qiao, Weizhe Zhang, Zhicheng Tian, Laurence T Yang, Yang Liu, and
Mamoun Alazab. Adversarial malware sample generation method based on the
prototype of deep learning detector. Computers & Security, page 102762, 2022.

[21] Weiwei Hu and Ying Tan. Generating adversarial malware examples for black-box
attacks based on gan. arXiv preprint arXiv:1702.05983, 2017.

[22] Justin Burr. Improving adversarial attacks against malconv. 2022.
[23] James Lee Hu, Mohammadreza Ebrahimi, and Hsinchun Chen. Single-shot black-

box adversarial attacks against malware detectors: A causal language model
approach. In 2021 IEEE International Conference on Intelligence and Security
Informatics (ISI), pages 1–6. IEEE, 2021.

[24] Luca Demetrio, Scott E Coull, Battista Biggio, Giovanni Lagorio, Alessandro
Armando, and Fabio Roli. Adversarial exemples: A survey and experimental eval-
uation of practical attacks on machine learning for windows malware detection.
ACM Transactions on Privacy and Security (TOPS), 24(4):1–31, 2021.

[25] Edward Raff, Jon Barker, Jared Sylvester, Robert Brandon, Bryan Catanzaro, and
Charles K Nicholas. Malware detection by eating a whole exe. In Workshops at
the Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[26] Luca Demetrio, Battista Biggio, Lagorio Giovanni, Fabio Roli, Armando Alessan-
dro, et al. Explaining vulnerabilities of deep learning to adversarial malware
binaries. In CEUR WORKSHOP PROCEEDINGS, volume 2315, 2019.

[27] Adeilson Antonio da Silva and Mauricio Pamplona Segundo. On deceiving
malware classification with section injection. arXiv preprint arXiv:2208.06092,
2022.

[28] Hyrum S Anderson, Anant Kharkar, Bobby Filar, and Phil Roth. Evading machine
learning malware detection. black Hat, 2017, 2017.

[29] Luca Demetrio, Battista Biggio, and Fabio Roli. Practical attacks on machine
learning: A case study on adversarial windows malware. IEEE Security & Privacy,
20(5):77–85, 2022.

[30] Darrell Whitley. A genetic algorithm tutorial. Statistics and computing, 4(2):65–85,
1994.

[31] Joannes Vermorel and Mehryar Mohri. Multi-armed bandit algorithms and
empirical evaluation. In European conference on machine learning, pages 437–448.
Springer, 2005.

[32] Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and Lorenzo Cavallaro.
Intriguing properties of adversarial ml attacks in the problem space. In 2020 IEEE
symposium on security and privacy (SP), pages 1332–1349. IEEE, 2020.

[33] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[34] Zhinus Marzi, Soorya Gopalakrishnan, Upamanyu Madhow, and Ramtin
Pedarsani. Sparsity-based defense against adversarial attacks on linear clas-
sifiers. In 2018 IEEE International Symposium on Information Theory (ISIT), pages
31–35. IEEE, 2018.

Conference’17, July 2017, Washington, DC, USA

[35] Microsoft. Pe format, 2022.
[36] Drakcybe. A dive into the pe file format, 2022.
[37] Hyrum S Anderson and Phil Roth. Ember: an open dataset for training static pe

malware machine learning models. arXiv preprint arXiv:1804.04637, 2018.
[38] Romain Thomas. Lief, 2019.
[39] Edward Raff, William Fleshman, Richard Zak, Hyrum S Anderson, Bobby Filar,

and Mark McLean. Classifying sequences of extreme length with constant
memory applied to malware detection. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pages 9386–9394, 2021.

[40] Zhichun Li, Manan Sanghi, Yan Chen, Ming-Yang Kao, and Brian Chavez. Hamsa:
Fast signature generation for zero-day polymorphic worms with provable attack
resilience. In 2006 IEEE Symposium on Security and Privacy (S&P’06), pages 15–pp.
IEEE, 2006.

[41] Cylance. Cylance blackberry cybersecurity, 2019.
[42] Avast. Avast premium security, 1988.
[43] Octavian Suciu, Scott E Coull, and Jeffrey Johns. Exploring adversarial examples

in malware detection. In 2019 IEEE Security and Privacy Workshops (SPW), pages
8–14. IEEE, 2019.

[44] Fangtian Zhong, Pengfei Hu, Guoming Zhang, Hong Li, and Xiuzhen Cheng.
Reinforcement learning based adversarial malware example generation against
black-box detectors. Computers & Security, 121:102869, 2022.

[45] Hyrum S Anderson, Anant Kharkar, Bobby Filar, David Evans, and Phil Roth.
Learning to evade static pe machine learning malware models via reinforcement
learning. arXiv preprint arXiv:1801.08917, 2018.

[46] Luca Demetrio, Battista Biggio, Giovanni Lagorio, Fabio Roli, and Alessandro Ar-
mando. Functionality-preserving black-box optimization of adversarial windows
malware. IEEE Transactions on Information Forensics and Security, 16:3469–3478,
2021.

[47] Ero Carrera. Pefile, 2017.
[48] Wei Song, Xuezixiang Li, Sadia Afroz, Deepali Garg, Dmitry Kuznetsov, and Heng

Yin. Mab-malware: A reinforcement learning framework for blackbox generation
of adversarial malware. In Proceedings of the 2022 ACM on Asia Conference on
Computer and Communications Security, pages 990–1003, 2022.

[49] Wei Wang, Ruoxi Sun, Tian Dong, Shaofeng Li, Minhui Xue, Gareth Tyson, and
Haojin Zhu. Exposing weaknesses of malware detectors with explainability-
guided evasion attacks. arXiv preprint arXiv:2111.10085, 2021.

[50] Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural
information processing systems, 12, 1999.

[51] Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. Variance reduction
techniques for gradient estimates in reinforcement learning. Journal of Machine
Learning Research, 5(9), 2004.

[52] Xian Wu, Wenbo Guo, Hua Wei, and Xinyu Xing. Adversarial policy train-
ing against deep reinforcement learning. In 30th USENIX Security Symposium
(USENIX Security 21), pages 1883–1900, 2021.

[53] Luca Demetrio and Battista Biggio. Secml-malware: Pentesting windowsmalware
classifiers with adversarial exemples in python. arXiv preprint arXiv:2104.12848,
2021.

[54] Luca Demetrio. Toucanstrike, 2022.
[55] AV-TEST. The best windows antivirus software for home users, 2022.
[56] VirusTotal. Virustotal, 2023.
[57] Richard Harang and Ethan M Rudd. Sorel-20m: A large scale benchmark dataset

for malicious pe detection. arXiv preprint arXiv:2012.07634, 2020.
[58] Temesguen Messay Kebede, Ouboti Djaneye-Boundjou, Barath Narayanan

Narayanan, Anca Ralescu, and David Kapp. Classification of malware programs
using autoencoders based deep learning architecture and its application to the mi-
crosoft malware classification challenge (big 2015) dataset. In 2017 IEEE National
Aerospace and Electronics Conference (NAECON), pages 70–75. IEEE, 2017.

[59] VirusShare. Virusshare, 2023.
[60] VirusTotal. Virustotal academic share, 2023.
[61] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernes-

tus, and Noah Dormann. Stable-baselines3: Reliable reinforcement learning
implementations. Journal of Machine Learning Research, 2021.

[62] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
Trust region policy optimization. In International conference on machine learning,
pages 1889–1897. PMLR, 2015.

[63] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-
thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In International conference on machine
learning, pages 1928–1937. PMLR, 2016.

[64] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[65] Stichting Cuckoo Foundation. Cuckoo sandbox, 2014.
[66] Ambra Demontis, Marco Melis, Maura Pintor, Jagielski Matthew, Battista Biggio,

Oprea Alina, Nita-Rotaru Cristina, Fabio Roli, et al. Why do adversarial attacks
transfer? explaining transferability of evasion and poisoning attacks. In 28th
USENIX security symposium, pages 321–338. USENIX Association, 2019.

[67] Shuofei Zhu, Jianjun Shi, Limin Yang, Boqin Qin, Ziyi Zhang, Linhai Song, and
Gang Wang. Measuring and modeling the label dynamics of online {Anti-
Malware} engines. In 29th USENIX Security Symposium (USENIX Security 20),
pages 2361–2378, 2020.

[68] Hojjat Aghakhani, Fabio Gritti, Francesco Mecca, Martina Lindorfer, Stefano
Ortolani, Davide Balzarotti, Giovanni Vigna, and Christopher Kruegel. When
malware is packin’heat; limits of machine learning classifiers based on static
analysis features. In Network and Distributed Systems Security (NDSS) Symposium
2020, 2020.

[69] Aurore Fass, Michael Backes, and Ben Stock. Hidenoseek: Camouflaging mali-
cious javascript in benign asts. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, pages 1899–1913, 2019.

[70] Irfan Ul Haq and Juan Caballero. A survey of binary code similarity. ACM
Computing Surveys (CSUR), 54(3):1–38, 2021.

[71] Abdullah Al-Dujaili, Alex Huang, Erik Hemberg, and Una-May O’Reilly. Adver-
sarial deep learning for robust detection of binary encoded malware. In 2018
IEEE Security and Privacy Workshops (SPW), pages 76–82. IEEE, 2018.

[72] MicroSoft. Windefender, 2022.
[73] ESET. Eset smart security premium, 2022.
[74] Kris Oosthoek and Christian Doerr. Sok: Att&ck techniques and trends in win-

dows malware. In International Conference on Security and Privacy in Communi-
cation Systems, pages 406–425. Springer, 2019.

[75] Bojan Kolosnjaji, Apostolis Zarras, George Webster, and Claudia Eckert. Deep
learning for classification of malware system call sequences. In Australasian joint
conference on artificial intelligence, pages 137–149. Springer, 2016.

[76] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and har-
nessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 PE File Format Brief Overview
	2.2 Target Systems

	3 Threat Model
	3.1 Generation Goal
	3.2 Examiner's Capabilities

	4 Methodology
	4.1 Functionality-preserving Modification
	4.2 Malware Variant Generation Optimization

	5 Evaluation
	5.1 Target AVs, Data & Benchmarks
	5.2 RQ1: Effectiveness analysis
	5.3 RQ2: Mutation efficiency comparisons
	5.4 RQ3: Transferability assessment
	5.5 RQ4: Explainability Exploration

	6 Discussion
	6.1 Obfuscation
	6.2 Potential Mitigation
	6.3 Limitations

	7 Related Work
	8 Conclusion
	References

