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MalAF : Malware Attack Foretelling From Run-time Behavior
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ABSTRACT

Foretelling ongoing malware attacks in real-time is challenging

due to the stealthy and polymorphic of their executive behavior

patterns. In this paper, we present MalAF, a novel Malware Attack

Foretelling framework utilizing run-time behavior (i.e., sequences

of API events) of malware to foretell the attack that has not yet

executed. MalAF first samples suspicious API events by assessing

the sensitivity of the parameters of each API event, and divides

them into multiple attak time slots by calculating the stong correla-

tion. Following that, MalAF employs dynamic heterogeneous graph

sequences to incrementally model contextual semantic for each

attack time slot, generating malware state sequences in real time.

Moreover, MalAF proposes a greedy adaptive dictionary (GAD)-

optimized IRL preference learning method to automate the capture

of families’ intrinsic attack preferences, which achieves higher per-

formance than the existing IRL. Additionally, with the guidance

of families’ attack preferences, MalAF trains an LSTM to foretell

the future path of the target malware. Finally, MalAF matches the

identified APIs’ paths with a malicious capability base and reports

the comprehensible attacks to an analyst. The experiments on real-

world datasets demonstrate that our proposed MalAF outperforms

the state-of-the-art methods, especially MalAF improves the base-

line by 3.01%∼4.73% of accuracy in terms of path foretell.

CCS CONCEPTS

• Security and privacy→Malware attack foretelling.

KEYWORDS

malware attack foretelling, API event, dynamic heterogeneous

graph, inverse reinforcement learning, proactively preventing
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1 INTRODUCTION

In the past years, cyber attacks have seriously damaged the Inter-

net due to the proliferation and growth of malware, which per-

form several attack steps to reach their specific objectives [28].
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Besides, attackers also frequently utilize novel techniques to obfus-

cate their actions [17]. To combat the threats imposed by malware,

many efforts have been proposed in malware classification or de-

tection [2, 8, 19, 23, 29, 31, 40, 44], but they are no longer effective

because they fail to proactively defend against the upcoming threats

in advance. Therefore, security researchers are increasingly per-

ceiving that it is indispensable to predict potential malware attacks

to proactively prevent unknown cyber risks [34, 35]. From that

perspective, several works [1, 4, 5, 14, 17, 22] in recent years to pre-

dict malware attacks. For instance, some researchers [1, 14] applied

Hidden Markov Models (HMMs) to reveal the multiple-step attacks

of malware. However, their performance is strongly dependent on

the collected alarms, and they are unable to handle the new types

of attacks. Moreover, LightGBM [22], LSTM [5], and DeepAG [17]

utilized machine learning or deep learning models to achieve the

goal of predicting future malicious activity by extracting various

behavioral features, such as API calls, permissions, or execution

events, in system logs. However, the aforementioned methods can

only make a binary prediction of whether the process includes

an attack rather than what the process’s future attack is likely to

be. Recently, Alrawi et al. presented FORECAST [4], a symbolic

analysis technique to forecast what capabilities are possible based

on the attack memory images. Although FORECAST has a promis-

ing predictive performance, it requires the posterior probabilities

of attacks occurring at each node, which is not easy to tackle as

the prior knowledge for unexpected and sophisticated strategies

taken by adversaries is difficult to obtain. To overcome these limi-

tations, this paper strives to propose an effective prediction model

to automatically foretell malware attacks to get ahead of attackers.

However, designing a productive malware attack foretelling

model encounters three major challenges: (1) The entire run-time

behavior of malware is a sequence, in which most of the paths are

normal and several may be malicious. In that case, a fundamen-

tal challenge is to accurately identify the multiple stages of event

paths that are most likely to lead to attacks from the raw event

sequence and generalize their comprehensible malicious capability;

(2) how to automatically model the malware behavior sequences

rather than overly relying on expert prior knowledge to simulate

all possible paths from a sophisticated environment; and (3) how to

dynamically model malware nonlinear dependencies and construct

semantic attack graphs to assist grasp malware states in real time.

To copewith the above challenges, we proposeMalAF, aMalware

Attack Foretelling framework capable of predictingmalware attacks

that have not yet executed utilizing dynamic inverse reinforcement

learning on forensics parameter-sensitive API events. The major

contributions of this paper are summarized below.

• We propose MalAF, a novel malware attack foretelling frame-

work, which includes a set of automatic workflows for a dy-

namic heterogeneous graph-based state sequence generating

phase, a greedy adaptive dictionary (GAD)-optimized IRL
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"call": {
"category": "file", 
"status": 1, 
"stacktrace": [], 
"api": "MoveFileWithProgressW ", 
"return_value": 1, 
"arguments": {

"oldfilepath": "C:\\...\\LICENSE.txt.WNCRYT", 
"newfilepath": "C:\\...\\LICENSE.txt.WNCRY", 
"newfilepath_r": "C:\\...\\LICENSE.txt.WNCRY", 
"flags": 2, 
"oldfilepath_r": "C:\\...\\LICENSE.txt.WNCRYT"

}, 
"time": 1666311300.54675, 
"tid": 1924, 

}

API category

API name

API time

API parameters

(a)

P1
R1

P2
ss-

P1 P2
f

fP1 P2
F1 aa-

fP1 P2

N1
coco-

M1 : M2 :

M3 : M4 :

f : fork
s : set

a : access
co : connect

o : open
cr : create

f

o-P1 P2S1
oM5 :

cr-P1 P2M1
crM6 :

(b)

Figure 1: (a) An API event. (b) Meta-graphs of MalAF.

preference learning phase, and a family preference-guided

LSTM path foretelling phase, thus mitigating the analytic

cost of security experts and helping themmake proactive pre-

vention in real time. Afterward, MalAF can not only foretell

the future attack path but also the comprehensible malicious

capability, reducing the semantic gap.

• We devise a strong correlation calculation (SCC) method that

effectively divides themalware event sequences intomultiple

attack time slots while leveraging the security semantics

contained in run-time API parameters to filter irrelevant API

events, thereby reducing path explosion.

• We investigate the dynamic heterogeneous graph sequence

to model the contextual semantic of various stages of mal-

ware and incrementally learn the system state sequence of

malware, which can capture the attack patterns of malware

in real time, only costing at most 77% of the time of state-of-

the-art static methods.

• We comprehensively evaluate the effectiveness and efficiency

of MalAF on three real-world datasets. MalAF demystifies

malware attack foretelling and provides a powerful counter

to emerging cyber threats.

2 THREAT MODEL AND PROBLEM

STATEMENT

2.1 Threat Model

Malware has the characteristics of being dynamic, polymorphic,

and stealthy. To avoid detection, attackers typically stay in the tar-

get host for several days, employing novel techniques to obfuscate

their actions, resulting in a complex attack environment. Indeed,

malware performs several malicious API events (consisting of name,

time, category, and parameters shown in Figure 1(a)) to reach their

specific objectives, which would be recorded as a sequence. Ana-

lyzing the API sequence used by malware is useful for identifying

its capabilities because malware’s behavior stems from its API calls

and data flow. Evidently, some paths in the “sequence” are malicious

attacks. In this case, analyzing the API sequence used by malware

regularly is useful for foretelling the future malicious path and

identifying its capabilities in advance, security experts can perform

proactive defenses before the network is compromised.

Figure 2 depicts the complete attack sequences of a ransomware

called Prolock [3]. To begin, the attackers inject malicious Shell-

Code into an image file “WinMgr. BMP” in order to infiltrate the

victim’s host; When the process arrives, it begins a series of actions

DOCX

! C&C

1. Code Injection:
- CreateProcess
- GetThreadContext
- VirtualAllocEx
- WriteProcessMemory
- SetThreadContext

2. Information Collection:
- GetNativeSystemInfo
- GetSystemInfo
- GetSystemWindowsDirectoryW

3. C&C Communication:
- HttpQueryInfoA
- InternetCheckConnectionA
- InternetConnectA

4. Files Traversal:
- GetSystemDirectory
- FindFirstFile
- FindNextFile
- DeleteFileW

5. Files Encryption:
- MoveFile
- CryptGenKey
- CryptExportKey
- OpenFile
- WriteFile

6. Ransom

Figure 2: Six typical attack steps of Prolock.

in the host machine, including exploring the running environment

and collecting information about the victim’s device; Then, the

malicious process contacts its Command and Control (C&C) server

to get the encryption key; Next, it traverses files and searches for

files with specific extensions; In the next stage, the malicious pro-

cess moves the targeted files to another location and then encrypts

them. Finally, attackers ransom the victim. As Figure 2 shows, the

different stages of attacks are actually intrinsically related, through

they seem seriously complex. Therefore, by forensically identifying

and modeling these “fixed paths” involved in malicious processes

as much as possible, we are capable of capturing the attacker’s pref-

erences and foretelling its next attack path, as well as the malicious

capability. For example, by forensically examining the sensitive path

of the previous two stages, we can foretell the malware attack “C&C

Communication = (HttpQueryInfoA, InternetCheckConnectionA,

InternetConnectA)” that has not yet occurred.

2.2 Problem Statement

MalAF is proposed in this paper to foretell the malware attacks

ahead of attackers. MalAF considers each malware family (for exam-

ple, Trojan.Rokrat) to be an “agent” and collects a certain amount of

demonstrated behavior (i.e., expert API sequences) D = (𝜁1,. . . ,𝜁 |𝐷 |)
to train the family’s intrinsic attack preference, where 𝜁𝑑 = (𝑒1,. . . ,𝑒𝐿)

and 𝑒𝑙 is a four-tuple consisting of ⟨𝑛𝑎𝑚𝑒, 𝑡𝑖𝑚𝑒, 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 ⟩.
MalAF first employs statistic-analysis and clustering-analysis tech-

niques to assess the sensitivity of each API event 𝑒𝑙 based on the

security semantics implicit in concrete API parameters, and then

filters out the irrelevant API events based on the lowest degrees of

sensitivities (i.e., 0). Then MalAF leverages the strong correlation

calculation (SCC) method to organically divide the filtered sensitive

API events into several combinations, forming the preprocessed

multi-stage attack sequence 𝜁 ′
𝑑
= (𝐶1,. . . ,𝐶𝑇 ), in which the APIs con-

tained in 𝐶𝑡 are invoked simultaneously to carry out the specific

attack at time slot t. In this case, we input the attack sequences 𝜁 ′ of
each agent into MalAF for analysis. MalAF first employs dynamic

heterogeneous graph sequences to model the interaction relation-

ship of API parameters contained in 𝜁 ′
𝑑
= (𝐶1,. . . ,𝐶𝑇 ) and then imple-

ments dynamic graph learning to generate semantically rich state

sequences (𝑠1,. . . ,𝑠𝑇 ) in real time; subsequently, in order to reduce
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Statistic Analysis

ℎ!"#

Malicious Capability Base

(a) Malware Behavior Parsing (b) Dynamic Graph Sequence-based IRL Preference Learning

(d) Malware Attack Alarm

(c) Family Preference-guide Path Foretelling

Clustering Analysis

… sTs2s1

S1
S2 S3

ST-2

ST-1
ST

a1 a2

a3

aT

aT-1a t
a4 MDP

GAD-optimized IRL Learning
LSTM

…
API1 API2 API3C1:(                            )

APIL-2 APIL-1 APILCT:(                            )

New Malware 
Behavior

Demonstrated 
Malware Behavior

P

P…P

D-GAT D-GAT D-GAT

API 
Parameters

MoveFileWithProgressW
(C:\\Users\\Administrator\\Documents\\bhhWMJKFedyl.txt.WNCRYT), 2

NtCreateFile (C:\\Users\\Administrator\\AppData\\Local\\Temp\\b.wnry), 2
…

Dynamic Walk Dynamic Walk Dynamic Walk

APIL+1 APIL+2!𝐶!"#:(                            )

!𝐶!"# : (CreateFile, WriteFile, SetFileAttribute)

Dropper : (CreateFile, WriteFile, SetFileAttribute, CreateProcess)
= 75%

: Network: Target Process : Process : File : RegistryP : System

Strong Correlation Calculation

G1 G2 GT

: Mutex

APIL+3

Figure 3: MalAF workflow. (a) Malware Behavior Parsing aims to preprocess the raw malware behavior into the multiple stages

of attack paths by computing the sensitivity and the correlation of the basic API events. (b) Dynamic Graph Sequence-based

IRL Preference Learning to automatically learn the intrinsic attack preferences ℎ𝑝𝑟𝑒 of a malware “agent” by utilizing dynamic

graph attention networks (D-GATs) and greedy adaptive dictionary learning based on the constructed malware heterogeneous

graph sequences (in which the gray nodes and gray lines indicate the expired events and the red lines indicate newly created

events). (c) Family Preference-guide Path Foretelling leverages an LSTM network to precisely foretell the future path 𝐶𝑇+1
under the guidance of the learned family preference ℎ𝑝𝑟𝑒 . (d) Malware Attack Alarm reports the matched malicious capability

to an analyst in real time.

the computing overhead, MalAF explores greedy adaptive dictio-

nary (GAD) learning to project the massive malware state space

into a transformation domain to obtain a lower-dimensional state

vector sequence (𝑠 ′
1
,. . . ,𝑠 ′

𝑇
). Ultimately, based on the constructed

MDP of malware, MalAF utilizes IRL to learn the intrinsic family

attack preference ℎ𝑝𝑟𝑒 of each agent from the demonstration D.
In the foretelling phase, given the historical API events of the

new malware, MalAF employs the family attack preference ℎ𝑝𝑟𝑒 of

the “agent” to guide the new malware to interact with the current

environment and outputs the foretold attack path 𝐶𝑇+1 = (Cre-

ateFile, WriteFile, SetFileAttribute) in the future. Finally, MalAF

compares𝐶𝑇+1 to the malicious capability base to identify the most

likely malicious capability (i.e., Dropper) and report it to security

experts.

3 PRELIMINARIES

Definition 1. Malware Dynamic Heterogeneous Graphs
Sequence (MDHGS). A dynamic heterogeneous graphs sequence of
malware is a graph set G = {𝐺1, 𝐺2,. . . , 𝐺𝑇 }, each 𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡 ) with
an entity type mapping 𝜙 : 𝑉𝑡 → A and a relation type mapping 𝜓 :
𝐸𝑡 → R, where 𝑉𝑡 and 𝐸𝑡 denote the entity set and the relation set of
𝐺𝑡 , respectively, and A and R denote the entity type and relation type,
respectively. Among them, |A| > 1, |R| > 1.

Definition 2. Meta-graph [39]. A meta-graph M is a directed
acyclic graph with a single source node 𝑛𝑠 (i.e., with in-degree 0)
and a single target node 𝑛𝑡 (i.e., with out-degree 0), defined on an
MDHGS with schema 𝑇𝐺 = (A, R), then a meta-graph can be defined
as M = (𝑉𝑀 , 𝐸𝑀 , 𝐴𝑀 , 𝑅𝑀 , 𝑛𝑠 , 𝑛𝑡 ), where 𝑉𝑀 ∈ 𝑉 , 𝐸𝑀 ∈ 𝐸 are
constrained by 𝐴𝑀 ∈ 𝐴 and 𝑅𝑀 ∈ 𝑅, respectively.

As shown in Figure 1(b), in this work, we investigate 6 real-world

meta-graphs in MalAF. Different meta-graphs represent different

semantic information.

Definition 3. Markov Decision Process (MDP) [21].AnMDP
is formally defined as a tuple X = (S, A, P, R,𝛾 ), where S is the malware
agent’s set of states and A is the set of actions. 𝑃 : 𝑆 × 𝐴 → 𝑃 (𝑆) is
the conditional transition probability function. The transition function
P models the uncertainty in the evolution of system states based on
the agent’s action. R : S × 𝐴→ R is the reward function that helps
the agent learn. 𝛾 ∈ [0,1] is the long-term reward discount coefficient,
which indicates the agent’s emphasis on the future reward value.

4 METHODOLOGY

Though the malware attack patterns are highly stealthy and com-

plicated, we still find them through analyzing sequences of API

events because a malware’s behavior stems from its API calls and

data flow [9]. Inspired by that, we propose MalAF, as illustrated
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(1) GetFileAttributesW ("category": "file","file_attributes": 8208, 

"filepath": "C:\\Users\\...\\msg\\")

(2) NtCreateFile ("category": "file","create_disposition": 5, 

"file_handle": "0x00000064", 

"filepath": "C:\\Users\\...\\m_chinese (traditional).wnry", 

"desired_access": "0x40100080", 

"file_attributes": 32 )

(3) NtWriteFile ("category": "file","file_handle": "0x00000064", 

"filepath": "C:\\Users\\...\\m_chinese (traditional).wnry", 

"buffer": "{…})

(4) SetFileTime ("category": "file","file_handle": "0x00000064")

(5) NtClose ("category": "system", "handle": "0x00000064")

(1) GetFileAttributesW ("category": "file","file_attributes": 8208, 

"filepath": "C:\\Users\\...\\msg\\”, 2)

(2) NtCreateFile ("category": "file","create_disposition": 5, 

"file_handle": "0x00000064", 

"filepath": "C:\\Users\\...\\m_chinese (traditional).wnry", 

"desired_access": "0x40100080", 

"file_attributes": 32, 2)

(3) NtWriteFile ("category": "file","file_handle": "0x00000064", 

"filepath": "C:\\Users\\...\\m_chinese (traditional).wnry", 

"buffer": "{…}, 2)

(4) SetFileTime ("category": "file","file_handle": "0x00000064”, 1)

(5) NtClose ("category": "system", "handle": "0x00000064”, 0)

(1) GetFileAttributesW ("category": "file","file_attributes": 8208, 

"filepath": "C:\\Users\\...\\msg\\”, 2)

(2) NtCreateFile ("category": "file","create_disposition": 5, 

"file_handle": "0x00000064", 

"filepath": "C:\\Users\\...\\m_chinese (traditional).wnry", 

"desired_access": "0x40100080", 

"file_attributes": 32, 2)

(3) NtWriteFile ("category": "file","file_handle": "0x00000064", 

"filepath": "C:\\Users\\...\\m_chinese (traditional).wnry", 

"buffer": "{…}, 2)

(4) SetFileTime ("category": "file","file_handle": "0x00000064”, 1)

0.66

0.81

0.35

Target Process

"icacls.exe"
"C:\\Users
\\...\\msg\\"

"C:\\Users
\\...\\m_chinese

(traditional).wnry"

create

write

fork

get

open

Parameter Sensitivity-based 
Events Filtering

Strong Correlation 
Calculation

Malware Heterogeneous
Graph Construction

(a) (b)

(c)(d)

Figure 4: Malware behavior parsing.

in Figure 3, which is divided into four phases: malware behavior

parsing (Figure 3(a)), dynamic graph sequence-based IRL preference

learning (Figure 3(b)), family preference-guide path foretelling (Fig-

ure 3(c)), and malware attack alarm (Figure 3(d)).

4.1 Malware Behavior Parsing

This phase is in charge of converting raw malware behavior into

multiple stages of attack paths as input to the MalAF training phase

and foretelling phases. As stated before, the execution behavior

of the malware is essentially composed of a sequence of run-time

API call events, shown in Figure 4(a), whose length is extremely

large, e.g., the vast majority of malware invokes more than 1,000

API events during the 5-minute execution, and most of the events

are normal and several may be malicious, making it hard to auto-

matically perform forensics from such a large-scale sequence.

To address this challenge, we first leverage a clever parame-

ter sensitivity-based events filtering method to discard irrelevant

events in each sequence by assessing their security semantics from

concrete API parameters; Furthermore, we present a strong correla-

tion calculation method to establish the multi-stage attack sequence

𝜁 ′
𝑑
= (𝐶1,. . . ,𝐶𝑇 ) by aggregating the strongly correlated basic APIs.

4.1.1 Parameter Sensitivity-based Events Filtering. Actually, each
event is represented as ⟨𝑛𝑎𝑚𝑒, 𝑡𝑖𝑚𝑒, 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 ⟩, and the

run-time parameters passed to APIs contain security-sensitive in-

formation that is valuable for malware analysis. As a result, we

propose a parameter sensitivity-based events filtering method that

integrates statistic-analysis and clustering-analysis techniques to

compute the degree of malice (i.e., sensitivity) of each API event,

with benign events having a minimum sensitivity of 0, malicious

events having a maximum sensitivity of 2, and the rest of the events

having the default sensitivity of 1.

We first employ a statistic-analysis to determine whether a pa-

rameter is malicious or benign. Concretely, we implement term

frequency inverse document frequency (TF-IDF) [12] to quantify

the parameter sensitivity of each API event. Formally, the frequency

can be expressed as:

𝑇𝐹𝑖 =
𝑛𝑖∑
𝑘 𝑛𝑘

, (1)

where 𝑛𝑖 is the number of occurrences of parameter i in the sample

set B, and
∑
𝑘 𝑛𝑘 is the sum of the occurrences of all parameters in

the sample set B.
Consequently, let 𝑇𝐹𝑚 refer to the frequency of a parameter in

malicious software, while 𝐷𝐹𝑚 refers to the frequency of software

containing the parameter. 𝑇𝐷𝑚 equals 𝑇𝐹𝑚 × 𝐷𝐹𝑚 . Similarly, 𝑇𝐹𝑏 ,

𝐷𝐹𝑏 , and 𝑇𝐷𝑏 denote the corresponding values in benign software.

Thereby, for a parameter, if it has a higher𝑇𝐷𝑚 but a lower𝑇𝐷𝑏 may

imply a malicious event with a high probability, while a parameter

with a lower 𝑇𝐷𝑚 but a higher 𝑇𝐷𝑏 is more likely to be benign. In

this case, we determine the sensitivity of a portion of API events (i.e.,

40%) with high confidence, then we exploit a clustering-analysis

technique to evaluate the uncovered events’ sensitivity.

Notably, we formalize parameters clustering as short text cluster-

ing. Motivated by the promising performance of GSDMM [36] (col-

lapsed Gibbs Sampling algorithm for the Dirichlet Multinomial Mix-

ture) in short text clustering, we also adopt it to divide the entire

events space into K (i.e., K = 3) categories following their run-time

parameters, namely benign, sensitive, and malicious. Eventually, as

shown in Figure 4(b), we are capable of filtering the irrelevant API

events with varying degrees of sensitivity, which is beneficial to

reducing extraneous path explosion.

4.1.2 Multi-stage Attack Sequence Establishing Based on Strong
Correlation Calculation. Indeed, as illustrated in Figure 4(c), the

sensitive APIs involved in malware do not appear individually, yet

they are invoked simultaneously in a combined manner to carry

out the specific attack [16]. Hence, it is reasonable to gather the

highly related successive APIs into a combination by exploiting

their Pearson correlation coefficients. For API𝑖 and API𝑗 , we com-

pute Pearson𝑖, 𝑗 between them as below:

𝑃𝑒𝑎𝑟𝑠𝑜𝑛𝑖, 𝑗 = 𝑐𝑜𝑣 (𝐴𝑃𝐼𝑖 , 𝐴𝑃𝐼 𝑗 )
/
𝛿𝐴𝑃𝐼𝑖𝛿𝐴𝑃𝐼 𝑗 , (2)
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Algorithm 1Multi-stage Attack Sequence Establishing

Input: Sensitive API events sequence 𝜁 = {API1, API2,. . . , API𝐿′ } of
the demonstrated malware;

Output: Multi-stages attacks sequence 𝜁 ′ = {C1,. . . , C𝑇 } of the
demonstrated malware;

1: 𝜁 ′← {} ∈ [1, L’];
2: T ← 0;

3: last← combination index of API𝑖−1;
4: for i ∈ 1 to L’ do
5: for API𝑗 ∈ C𝑙𝑎𝑠𝑡 do
6: Pearson𝑖, 𝑗 =

𝑐𝑜𝑣 (𝐴𝑃𝐼𝑖 ,𝐴𝑃𝐼 𝑗 )
𝛿𝐴𝑃𝐼𝑖

𝛿𝐴𝑃𝐼𝑗

;

7: if Pearson𝑖, 𝑗 < 𝜏 then

8: T++;
9: C𝑇 ← API𝑖 ;
10: else

11: C𝑙𝑎𝑠𝑡 ← C𝑙𝑎𝑠𝑡 ∪ API𝑖 ;
12: end if

13: end for

14: end for

15: return 𝜁 ′ = {C1,. . . , C𝑇 }

where cov(API𝑖 , API𝑗 ) represents the covariance between API𝑖 and
API𝑗 , 𝛿𝐴𝑃𝐼𝑖 and 𝛿𝐴𝑃𝐼 𝑗 are the standard deviations of API𝑖 and API𝑗 .

Ultimately, as shown in Algorithm 1, we obtain themulti-stage at-

tack sequence 𝜁 ′
𝑑
= (𝐶1,. . . ,𝐶𝑇 ) of the demonstrated malware, which

dramatically reduces the learning cost of MalAF.

4.2 Dynamic Graph Sequence-based IRL

Preference Learning

To model temporal sequences, inverse reinforcement learning (IRL)

is a promising technology that can automatically learn the agent’s

goals or intentions from the observed demonstration, which has

shown soaring performance in vehicle trajectory [24, 27, 33, 38],

traffic prediction [42], autonomous driving [10, 37], and so on. Mo-

tivated by the strength of inverse reinforcement learning, in this

subsection we attempt to implement IRL to automatically learn the

malware attack preferences from the demonstrated API sequences.

Here, we will first discuss how to use MDP to model the decision-

making processes of themulti-stage attack sequence 𝜁 ′
𝑑
= (𝐶1,. . . ,𝐶𝑇 ).

Concretely, we regard each malware family as an “agent” and then

collect a certain amount of expert API sequences from eachmalware

family. The goal of each agent is to evaluate the various actions

associated with the current state using intrinsic preferences. It

is universally acknowledged that there are five factors in MDP:

State set S, Action set A, Transition probability function P𝑠𝑎 , Dis-
count factor 𝛾 , and Reward R, however, the transition function P𝑠𝑎
and reward function R in our task are not available since malware

environments are complex. To this end, we emphasize learning

semantically rich state sequences and leveraging a model-free IRL

without knowledge of the transition function to generate the intrin-

sic attack preferences for each malware family “agent”. As depicted

in Figure 3(b), this phase includes two advanced components (see

subsection 4.2.1 and 4.2.2).

4.2.1 Dynamic Heterogeneous Graph-based State Learning. As stated
before, we divide the entire malware’s API sequence into multiple

time slots, where each 𝐶𝑡 corresponds to a state of the malware

at one specific stage. To accurately catch the fine-grained state

representation of malware, it is essential to fully take advantage of

the contextual semantic information from the API parameters at𝐶𝑡 .

Concretely, we first extract six types of system entities (i.e., process,

file, network, system, mutex, and registry) and six types of relation-

ships (i.e., process-process, process-file, process-network, process-

system, process-registry, and process-mutex) among them, and then

employ a dynamic heterogeneous graph sequence (e.g., Figure 4(d))

to model the sensitive parameter interactions at each time slot (e.g.,

Figure 4(c)). Different from constructing the heterogeneous graph

from scratch in the existing static frameworks [32, 40], we effi-

ciently utilize the overlapping information at adjacent stages (e.g.,

𝐺𝑡−1 and 𝐺𝑡 ) to receive richer contextual representations, which

offers better efficiency. As shown in Figure 3(b), G𝑡 at C𝑡 can be

updated from G𝑡−1 as new events are joined and expired events are

removed, as represented by the adjacency matrix A𝑡 .
Subsequently, MalAF investigates the dynamic graph attention

networks (D-GATs) with the guidance of the meta graph-based

dynamic walk to timely update the evolving state representation 𝑠𝑡 ,

which discriminatively aggregates the newly joined nodes in𝐺𝑡 . In

particular, given the constructed malware heterogeneous graph 𝐺𝑡
and the pre-defined meta-graphsM , we capture the fine-grained

state representation 𝑠𝑡 through the following steps:

1) Search for meta-graph-based dynamic neighborhood Δ𝑁
(𝑚)
𝑡 :

To capture the semantic-unique malware attack patterns, as shown

in Figure 1(b), MalAF leverages the pre-defined meta-graph set

M = {M1, M2,. . . , M |𝑀 |} to guide the dynamic random walk, which

only traverses the changed nodes rather than all nodes in the cur-

rent graph. Formally, given𝐺𝑡 , the dynamic neighborhood Δ𝑁
(𝑚)
𝑡

can be generated by a meta-graph𝑀𝑚 is:

Δ𝑁
(𝑚)
𝑡 = 𝑁

(𝑚)
𝑡

⋃
Δ𝑉𝑡 , (3)

where 𝑁
(𝑚)
𝑡 represents the meta-graph-based neighborhood of

target process node p walks along with𝑀𝑚 , and Δ𝑉𝑡 denotes the
dynamic node set (i.e., new nodes or nodes of a new connection

edge) on the current heterogeneous graph 𝐺𝑡 .

2) Aggregate node-level representation h
(𝑚) (𝑘)
𝑡𝑝

: Particularly, we

first obtain the node-level representations h
(𝑚) (𝑘)
𝑡𝑝

of the target

process node p, which is iteratively updated by combining its own

feature of the representations over its dynamic neighbors in Δ𝑁
(𝑚)
𝑡

since the known nodes in G𝑡 have been aggregated in G𝑡−1. Thus,
the k-th layer of the node-level aggregator [18] is:

𝛼
(𝑚)
𝑡𝑢

=
𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (W𝑇 [s𝑡−1,h𝑡−1𝑢 ]+b))∑

𝑢′∈Δ𝑁 (𝑚)𝑡

𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (W𝑇 [s𝑡−1,h𝑡−1𝑢′ ]+b))
, (4)

h(𝑚) (𝑘 )𝑡𝑝
=𝑀𝐿𝑃 (𝑘 )

©«(1+𝜖 (𝑘 ) )h
(𝑚) (𝑘−1)
𝑡𝑝

+
∑︁

𝑢∈Δ𝑁 (𝑚)𝑡

𝛼
(𝑚)
𝑡𝑢

h
(𝑚) (𝑘−1)
𝑡𝑢

ª®®¬ , (5)

where h(𝑚) (𝑘−1)𝑡𝑝
and h(𝑚) (𝑘−1)𝑡𝑢

are the node-level representations

of the target process node p and its corresponding neighbor node

u at the (k-1)-th layer, respectively, and they can be initialized
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by the learned representations s𝑡−1 and h𝑡−1𝑢 at 𝐺𝑡−1. 𝜖 (𝑘) is a
balance parameter. Finally, the overall node-level representation of

the target process node p concerning the meta-graph𝑀𝑚 is:

h(𝑚)𝑡𝑝
= 𝐶𝑂𝑁𝐶𝐴𝑇 ( [h(𝑚) (𝑘)𝑡𝑝

]𝐾
𝑘=1
). (6)

3) Aggregate graph-level state representation s𝑡 : Once the semantic-

unique node representations are generated, we intend to aggregate

them into graph embedding space. Formally,

𝜔
(𝑚)
𝑡 =

𝑒𝑥𝑝 (𝜎 (b[W𝑏h
(𝑚)
𝑡𝑝
∥W𝑏h

(𝑛)
𝑡𝑝
]))∑

𝑔∈ |𝑀 | 𝑒𝑥𝑝 (𝜎 (b[W𝑏h
(𝑚)
𝑡𝑝
∥W𝑏h

(𝑔)
𝑡𝑝
]))

, (7)

s𝑡 =

|𝑀 |∑︁
𝑚=1

𝜔
(𝑚)
𝑡 × h(𝑚)𝑡𝑝

, (8)

where m≠n ∈ {1,. . . , |M|}, 𝜔 (𝑚)𝑡 is the meta-graph attention weight

of𝑀𝑚 . 𝜎 is the activation function, b is the weight vector from the

input layer to the hidden layer of the neural network, and W𝑏 is

the corresponding weight matrix.

Consequently, as demonstrated in Figure 3(b), based on the se-

mantically rich state sequence and various API actions, we construct

the MDP of malware.

4.2.2 GAD-optimized IRL Learning. To further improve the real-

time performance of IRL, we propose a greedy adaptive dictio-

nary (GAD) learning algorithm to project the malware state space

to a transform domain [43], where the coefficients are fewer and

smaller than those of the time domain. Formally, the problem of

GAD learning is to find an orthogonal matrix H such that the

following equation holds:

S = H S′, (9)

where S’ is the coefficient with respect to the dictionary H . S is the

malware state matrix.

Dictionary learning constructs a dictionary by using an alternat-

ing optimization strategy. Hence, we design a minimum index to

match the sparse representation and minimize coefficients, which

is defined as:

𝜂 = ∥𝑠𝑛 ∥0 + ∥𝑠𝑛 ∥2, (10)

where ∥ · ∥0 and ∥ · ∥2 are the l0-norm and l2-norm, respectively;

among them, the former keeps the sparsity of the coefficients and

the latter keeps the coefficients as small as possible. The vector 𝑠𝑛
denotes the n-th column of the original state matrix S.

We obtain the orthogonal matrix H through multiple iterations,

during each iteration l, we define a residual termΦ𝑙 = [𝜙𝑙
1
, 𝜙𝑙

2
, . . . , 𝜙𝑙

𝑁 2
],

where 𝜙𝑙𝑛 ∈ 𝑅𝑁
2

is the n-th column of the residual value. Hence, the

optimal orthogonal vector with the minimum l0-norm and l2-norm
can be obtained by:

𝑛𝑙 ← 𝑎𝑟𝑔 𝑚𝑖𝑛𝑛∉𝑁 𝑙 {𝜂 = ∥𝜙𝑙𝑛 ∥0 + ∥𝜙𝑙𝑛 ∥2}, (11)

where element 𝑛𝑙 denotes the n-th column of the residual term at

the l-th iteration. During each iteration, the column of the residual

term with the minimum index is determined and normalized to

gain an orthogonal basis.

dl ← 𝜙𝑙
𝑛𝑙
/∥𝜙𝑙

𝑛𝑙
∥2, (12)

𝜙𝑙+1𝑛 ← 𝜙𝑙𝑛 − dl < dl, 𝜙𝑙𝑛 > . (13)

Eventually, through several greedy iterations, the proposed greedy

adaptive dictionary learning algorithm is capable of finding the

optimal dictionary in the sense that the coefficient matrix S’ obeys
the optimal sum of the l0-norm and l2-norm, which significantly

reduces the computational complexity of the subsequent IRL.

Motivated by [15], we as well as utilize model-free Q-learning to

capture the malware’s intrinsic attack preference. Formally, given

the preprocessed multi-stage attack sequence (i.e., a sequence of

state-action pairs of length T ) 𝜁 ′ = {(𝑠 ′1,a1), (𝑠 ′2,a2),. . . ,(𝑠 ′𝑇 ,a𝑇 )} in
D, the log-likelihood can be expressed as:

𝐿(ℎ𝑝𝑟𝑒 ) = 𝑙𝑜𝑔 𝑃 (𝐷 ;ℎ𝑝𝑟𝑒 )

=
∑︁
𝜁 ′∈𝐷
(𝑙𝑜𝑔 𝑃 (𝑠 ′

1
)+
𝑇−1∑︁
𝑖=0

𝑙𝑜𝑔 𝜋ℎ𝑝𝑟𝑒 (𝑠
′
𝑖+1, 𝑎𝑖+1)+

𝑇−1∑︁
𝑖=1

𝑙𝑜𝑔 𝑇 (𝑠 ′𝑖 , 𝑎𝑖 , 𝑠
′
𝑖+1)),

(14)

where ℎ𝑝𝑟𝑒 is the attack preference vector of the expert API se-

quences D of the malware “agent”. 𝜋 and T denote the malware

agent’s policy and transition function, respectively.

Considering the transition function in Eq. 14 is always excluded

when computing the gradient in a model-free Q-learning, we have:

𝜕𝐿(ℎ𝑝𝑟𝑒 )
𝜕ℎ𝑝𝑟𝑒

=
∑︁
𝜁 ′∈𝐷

𝑇−1∑︁
𝑖=1

1

𝜋ℎ𝑝𝑟𝑒 (𝑠 ′𝑖 , 𝑎𝑖 )
𝜕𝜋ℎ𝑝𝑟𝑒 (𝑠 ′𝑖 , 𝑎𝑖 )

𝜕ℎ𝑝𝑟𝑒
. (15)

Additionally, the policy 𝜋 can be explored by the parameterized

Boltzmann exploration [15] as follows:

𝜋ℎ𝑝𝑟𝑒 (𝑠
′, 𝑎) =

𝑒
𝛽 𝑄ℎ𝑝𝑟𝑒 (𝑠′,𝑎)∑

𝑎′∈ 𝐴 𝑒
𝛽 𝑄ℎ𝑝𝑟𝑒 (𝑠′,𝑎′)

=
𝑒
𝛽 𝑄ℎ𝑝𝑟𝑒 (𝑠′,𝑎)

𝑍ℎ𝑝𝑟𝑒 (𝑠 ′)
, (16)

where 𝛽 is the Boltzmann temperature.

Given the exploration policy 𝜋ℎ𝑝𝑟𝑒 , we estimate the Q-function

𝑄ℎ𝑝𝑟𝑒 (𝑠 ′, 𝑎) of the demonstration D by leveraging the powerful

model-free Q-learning, which is defined as:

𝑄𝑡
ℎ𝑝𝑟𝑒
(𝑠 ′, 𝑎) ← (1 − 𝜇)𝑄𝑡−1

ℎ𝑝𝑟𝑒
(𝑠 ′, 𝑎) + 𝜇 (𝑅ℎ𝑝𝑟𝑒 (𝑠

′, 𝑎)+

𝛾
∑︁
𝑎′∈𝐴

𝜋𝑡−1
ℎ𝑝𝑟𝑒
(𝑠 ′, 𝑎′)𝑄𝑡−1

ℎ𝑝𝑟𝑒
(𝑠 ′, 𝑎′)), (17)

where 𝜋𝑡
ℎ𝑝𝑟𝑒
(𝑠 ′, 𝑎) is obtained from the t-th iteration of the Q-

function. 𝜇 is the learning schedule, 𝛾 is the discount factor, and

𝑅ℎ𝑝𝑟𝑒 (𝑠 ′, 𝑎) is the reward for taking action a in state s’.
Next, we differentiate Eq. 17, and this operation may be per-

formed recursively to update the attack preference vector h𝑝𝑟𝑒 .

4.3 Family Preference-guide Path Foretelling

In the foretelling phase, given the historical API events of the

new malware, MalAF employs the family attack preference ℎ𝑝𝑟𝑒
of the “agent” to guide the new malware to interact with the cur-

rent environment and outputs the foretold attack path 𝐶𝑇+1 =

(𝐴𝑃𝐼𝐿+1, 𝐴𝑃𝐼𝐿+2, 𝐴𝑃𝐼𝐿+3) that has the highest probability. Subse-
quently, we first utilize a long short-term memory (LSTM [13])

network to output the temporal embedding of the new malware by

inputting the preprocessed multi-stage attack sequence:

ℎ𝐶𝑡
= 𝑀𝐿𝑃 (𝑓𝑖 ∥ 𝑓𝑖+1∥ . . . ∥ 𝑓𝑖+𝑤−1), (18)

ℎ𝑇 = 𝐿𝑆𝑇𝑀 (ℎ𝐶1
, . . . , ℎ𝐶𝑡

, . . . , ℎ𝐶𝑇
), (19)
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Table 1: Description of 8 Malicious Capabilities in MalAF

Malicious Capability Tracked APIs Description of Behaviour

𝐴𝑇𝑇1 = File Exfiltration

(OpenFile, ReadFile,

Socket, Send)

Track Socket creation, file access, and the parameters

associated with each API.

𝐴𝑇𝑇2 = Code Injection

(CreateProcess, GetThreadContext,

VirtualAllocEx, WriteProcessMemory,

SetThreadContext)

Process hollowing, tracks from SetThreadContext to

identify parameter constraints tying back to pContext,

hProcess, and pHandle.

𝐴𝑇𝑇3 = Dropper

(CreateFile, WriteFile,

SetFileAttribute, CreateProcess)

Download of a malicious piece of code, which may be

disguised as legitimate software, an image or document.

𝐴𝑇𝑇4 = Screen Spying

(GetDesktopWindow, GetWindowDC,

CreateCompatiableBitmap,

CreateCompatiableDC, SelectObject)

Capture screen by identifying a handle to bitmap object.

Then constraints the handle to a Windows handle object

that is created by referencing the user Window.

𝐴𝑇𝑇5 = Persistence

(RegSetValueEx, RegOpenKeyEx,

GetFullPathnameA)

Implement a persistent that relies on registry keys.

𝐴𝑇𝑇6 = C&C Communication

(HttpQueryInfoA,

InternetCheckConnectionA, InternetConnect)

Exchanges with the discovered its C&C server, over IRC,

HTTP, or in some cases, custom protocols.

𝐴𝑇𝑇7 = Network Scan (Socket, listen) As a server that listens on the socket.

𝐴𝑇𝑇8 = Information Collection

(GetNativeSystemInfo, GetSystemInfo,

GetSystemWindowsDirectoryW)

Attempt to get detailed information about the operating

system and hardware.

where f𝑖 , f𝑖+1, and f𝑖+𝑤−1 are the feature vectors of the objects API𝑖 ,
API𝑖+1, and API𝑖+𝑤−1 in 𝐶𝑡 ; ∥ denotes the concatenation operation.

As illustrated in Figure 3(d), MalAF foretells 𝐶𝑇+1 = (CreateFile,

WriteFile, SetFileAttribute) by inputting h𝑇 and h𝑝𝑟𝑒 through a fully
connected decoder, which is formulated as:

𝐶𝑇+1 = 𝜎𝑑 (𝑤𝑑 · (ℎ𝑇 ∥ℎ𝑝𝑟𝑒 ) + 𝑏𝑑 ), (20)

where ∥ denotes the concatenation operation. 𝜎𝑑 is the nonlinear

activation function of the decoder, and𝑤𝑑 and 𝑏𝑑 are the trainable

weight parameters and bias of the decoder, respectively. Finally, the

loss function 𝑙 of our MalAF can be formulated as:

𝑙 = | | (𝐶𝑇+1 −𝐶𝑇+1) | |2𝐹 . (21)

With the loss function l, we perform stochastic gradient descent to

fine-tune all learnable parameters.

4.4 Malware Attack Alarm

To generalize high-level malicious capabilities, bridging the se-

mantic gap, as shown in Figure 3(d), MalAF maintains a malicious

capability base to match the foretold APIs’ path to report compre-

hensible malicious capabilities to an analyst in real-time. According

to the existing research [1, 4, 20], we raise eight typical capabilities

in our malicious capability base: Code Injection, File Exfiltration,

Dropper, Persistence, Screen Spying, C&C Communication, Net-

work Scan, and Information Collection. As shown in Table 1, each

malicious capability is defined in terms of the corresponding API

path and their parameters, and they can easily be extended to cap-

ture additional capabilities based on the target system’s APIs.

Concretely, as shown in Figure 3(d), the foretold path 𝐶𝑇+1
matches the “Dropper” with a 75% probability. To that end, MalAF

quickly and clearly reports the alarm to security experts, reducing

analytic cost and enabling proactive prevention in real time.

5 EXPERIMENT

In this section, we assess MalAF’s ability to foretell malware at-

tacks. We first introduce the datasets, experiment setup, and base-

line methods. Then, we report the experimental results, including

the performance of path foretelling, the performance of malware

attack foretelling, parameter sensitivity, ablation study, and the

performance of packed malware.

5.1 Dataset

5.1.1 Statistics. We validated the performance of MalAF on three

datasets, involving two public datasets (i.e., Kaggle Malware
1
and

Mal-API-2019
2
) and our captured ACT-SANDBOX dataset. Kaggle

Malware dataset [25, 26] is the most widely used in Kaggle com-

petitions and recent malware research, which includes the first

100 non-repetitive API sequences and the labels of 37,784 malware

and 1,079 benign software. Mal-API-2019 dataset [6, 7] involves a

total of 7,107 malware, and each record is an ordered API sequence

generated by the Cuckoo sandbox environment. Spanning from

Mar 2020 to Dec 2021, the ACT-SANDBOX dataset collects 38,703

malware samples from 108 families and 9,719 benign samples from

the authoritative VirusShare,
3
each of which contains a Cuckoo

sandbox behavior report and a label generated by VirusTotal.
4
We

assume that our dataset provides good coverage because of the

sheer number of files submitted to the platform. The basic statistics

of all datasets are presented in Table 2.

For all datasets, we randomly selected 50 known sample from

each type of malware as the expert API sequences to learn families’

1
https://www.kaggle.com/ang3loliveira/malware-analysis-datasets-api-call-

sequences.

2
https://github.com/ocatak/malware_api_class.

3
https://virusshare.com.

4
https://www.virustotal.com.
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Table 2: Statistics of The Three Datasets

Dataset Samples Distribution

Kaggle Malware

Trojan Downloader Virus Spyware Adware Dropper Worm Backdoor Benign

12,824 6,560 5,522 5,897 4,449 945 808 779 1,079

Mal-API-2019

Trojan Downloader Worms Virus Backdoor Dropper Spyware Adware -

1,001 1,001 1,001 1,001 1,001 891 832 379 -

ACT-SANDBOX

Trojan Downloader Virus Spyware Ransom Dropper Worm Backdoor Benign

21,572 573 5,272 864 3,124 697 4,283 2,318 9,719

# Families 47 2 13 5 11 3 17 10 1

Table 3: Performance Comparison of Malware Path Foretelling With Different Methods

Method ACT-SANDBOX Kaggle Malware Mal-API-2019

ACC(%) F1-score(%) Foretell Time(s) ACC(%) F1-score(%) Foresee Time(s) ACC(%) F1-score(%) Foretell Time(s)

MA-HMM [14] 84.76 84.82 15.9 81.57 81.09 8.8 83.55 83.90 13.1

LightGBM [22] 79.41 78.66 83.2 75.65 75.71 57.5 78.32 78.29 80.5

FORECAST [4] 95.81 95.93 147.7 92.14 92.77 89.4 93.19 93.21 120.3

MA-GAIL [41] 93.11 93.47 28.1 90.27 90.35 21.8 90.66 90.58 25.4

Smell [5] 90.13 90.46 23.6 85.34 85.93 19.0 87.55 87.64 21.7

MalAF (ours) 98.82 98.85 38.8 96.87 96.90 24.1 97.39 97.76 30.9

attack preferences. Then, in the path foretelling phase, we used 60%

of the rest samples as training data and 40% samples as test data.

5.1.2 Ground Truth. In our experiments, evaluating the foretell

performance of MalAF involves 2 aspects: (1) the accuracy of the

foretell path, and (2) the accuracy of the identified malicious capa-

bility. As a result, we manually analyze the attack stages based on

Cuckoo reports and label ground truth 𝐶𝑇+1 for samples collected.

Concretely, we first located the typical attack point T+1 in the mal-

ware sequences by tracking APIs in Table 1, and then labeled the

path and specific malicious capability for 𝐶𝑇+1.

5.2 Experiment Setup

We default the learning rate to 0.01, the dropout to 0.5, the em-

bedding size to 128, the number of layers of GAT to 3, and the

foretold path length to 3. Moreover, we use the experimental setup

described in [15] for our model-free IRL experiments, with 𝛾=0.01

and 𝛽=0.01. We train MalAF on a machine equipped with a 16

cores Intel(R) Core(TM) i7-6700 CPU @3.40 GHz with 64 GB RAM

and 4 × NVIDIA Tesla K80 GPU. All of the experiments developed

with Python 3.6 are executed on the TensorFlow-GPU framework

supported by the Ubuntu 16.0.4 operating system.

5.3 Baseline Methods

We compare MalAF with five state-of-the-art prediction methods

and briefly introduce these baselines as follows:

• MA-HMM [14] is presented to predict multi-step attacks by

leveraging the hidden Markov model and IDS alerts.

• LightGBM [22] is a gradient boosting decision tree algorithm

to predict future malware attacks by combining decision

trees, random forests, and logistic regression.

• FORECAST [4] leverages the execution context from the

malware’s memory image to guide a symbolic analysis, then

computes percentages for each discovered capability.

• Smell [5] relies on extracting various static and dynamic

characteristics (e.g., API calls, system calls, and permissions)

and training the LSTM model to predict the presence of

malicious behavior in a process.

• MA-GAIL [41] is an imitation learning-based traffic predic-

tion model that employs generative adversarial imitation

learning to estimate the vehicle trajectory.

5.4 Path Foretelling Evaluation

To verify the performance of MalAF on path foretelling, we empir-

ically compared MalAF with the state-of-the-art malware attack

prediction methods in terms of effectiveness and efficiency.

5.4.1 Effectiveness Evaluation. The comparison results of MalAF

and baseline methods are recorded in Table 3, and the following

observations can be made:

First, MalAF outperforms the traditional deep learning mod-

els (such as LightGBM and Smell) with a significant performance

gain in terms of all metrics. In particular, the proposed MalAF

achieves improvements of at least 8.69%, 11.53%, and 9.84% on

accuracy (i.e., ACC) on the ACT-SANDBOX dataset, Kaggle Mal-

ware dataset, and Mal-API-2019 dataset, respectively, which demon-

strates that the model-free inverse reinforcement learning based

on the dynamic heterogeneous graph state sequences has excellent

ability to automatically capture the temporal attack preference, thus

boosting the foretelling accuracy of potential (or upcoming) paths.

Second, FORECAST has the closest performance to MalAF; this

mainly contributes to the fact that FORECAST not only employs

symbolic analysis to manually simulate all possible paths based on

ongoing API sequence but also screens the suspicious paths from

2023-01-18 06:20. Page 8 of 1–13.
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Table 4: Malware Attack Foretelling Performance of 12 SelectMalware Families FromACT-SANDBOXDataset (𝑃𝑀 : Avg. Matched

Percentage, ACC : Foretelling Accuracy)

Malware File Exfilt Code Inject Dropper Screen Spy Persistence C&C Comm Network Scan Info Coll

Type Family 𝑃𝑀 ACC(%) 𝑃𝑀 ACC(%) 𝑃𝑀 ACC(%) 𝑃𝑀 ACC(%) 𝑃𝑀 ACC(%) 𝑃𝑀 ACC(%) 𝑃𝑀 ACC(%) 𝑃𝑀 ACC(%)

Trojan Rokrat 75% 98.4 61% 96.6 - - 50% 98.1 - - 67% 100 - - - -

Backdoor

Andromeda - - 80% 100 - - - - 100% 100 84% 97.6 100% 100 50% 99.5

AveMaria 92% 96.8 87% 100 - - 56% 92.5 78% 97.9 54% 96.3 100% 100 73% 98.2

Berbew - - - - 86% 97.2 78% 100 76% 96.3 85% 95.2 75% 100 91% 100

Virus

Floxif 79% 100 - - - - - - - - 64% 99.0 - - 67% 97.4

Sality 65% 95.5 - - - - - - - - 48% 95.4 100% 100 - -

Ransom

CTBLocker 80% 99.2 - - - - - - - - 83% 98.7 100% 100 78% 99.1

WannaCrypt 83% 98.6 78% 98.3 - - - - 84% 100 74% 98.5 90% 98.7 43% 100

DownloaderMarap 80% 96.1 93% 94.8 - - 83% 97.9 - - - - - - 68% 98.7

Spyware AgentTesla 50% 95.8 60% 100 91% 98.0 94% 100 67% 94.4 94% 100 - - 83% 100

Worm Mydoom 88% 100 - - - - - - 67% 99.3 67% 99.8 100% 100 - -

Dropper Dinwod 65% 97.7 - - 100% 100 - - 51% 95.2 - - 88% 100 - -

fine-grained API arguments, which can discover the malicious path

with a high probability by leveraging extensive expert knowledge

to calculate the “concreteness” score of each API operation.

Third, compared with the imitation learning prediction method,

MA-GAIL, our proposed MalAF is superior to it in terms of fore-

telling effectiveness on all datasets. The main reason is that, ulike

MA-GAIL, which naively investigates temporal states without con-

sidering interactive context, our proposed MalAF ingeniously uti-

lizes a dynamic heterogeneous graph sequence to capture the com-

prehensive semantic information from various API parameters,

which can better capture the evolutionary pattern of malware in

real time to generate the fine-grained state representations.

5.4.2 Efficiency Evaluation. Here we also study the time efficiency

of MalAF on three datasets. The comparison results are shown in

Table 3. We make three crucial observations.

First, the traditional statistics-based and machine learning-based

prediction models (i.e., MA-HMM and Smell) always consume less

time than complex deep learning models or reinforcement learning

models (i.e., MalAF, LightGBM, and MA-GAIL). These phenomena

show that the simpler the model, the lower the time complexity.

Second, both are imitation learning; the foretelling time of MalAF

is slightly greater than that ofMA-GAIL. Notably, MalAF sacrifices a

slight time consumption to learn a series of dynamic heterogeneous

graph-based state representations from the API parameters, which

dramatically boost the effectiveness of malware path foretelling.

Third, MalAF is significantly faster than FORECAST over all

three datasets. The reasons can be attributed to the facts: first,

different from FORECAST that consumes a large amount of time to

manually simulate all possible paths, the proposed MalAF utilizes

IRL to optimize the learn progress of attack preferences, which

reduces the foretelling time. Second, MalAF leverages the security

semantics contained in run-time API parameters to filter redundant

API events, which is beneficial to reduce the API event space to

boost the foretelling efficiency.

5.5 Malware Attack Foretelling Evaluation

To verify the performance of MalAF on malware attack foretelling,

we selected the most recent samples of 12 malicious families from

the ACT-SANDBOX dataset, with a sample size ranging from 10 to

120, and manually analyzed ground truth for multiple stages of each

malware family. As shown in Table 4, MalAF outputs 57 distinct

malicious capabilities, and 𝑃𝑀 represents thematched percentage of

the foretold APIs’ paths 𝐶𝑇 to the relevant tracked APIs in Table 1.

File Exfiltration: File Exfiltration can be seen as an “end goal”

malicious capability where malware sends stolen information from

an infected host by uploading a file to its drop site. MalAF re-

ported 10 File Exfiltrations, in which the Floxif and Mydoom fam-

ilies achieved 100% foretelling accuracy. Concretely, Floxif and

Mydoom invoke OpenFile and ReadFile APIs to copy data into a

buffer, followed by use of the send network API.

Code Injection: MalAF reports 6 Code Injections, which are

done by the OpenProcess or CreateProcess API operations, fol-

lowed by WriteProcessMemory (process hollowing). Explorer and

Svchost are the most common Windows programs injected into.

The AveMaria, Andromeda, and AgentTesla families achieved 100%

foretelling accuracy. In particular, AveMaria hollows into Svchost

by invoking CreateProcess, and then swaps the code pages with

WriteProcessMemory and SetThreadContext. Dissimilarly, TeslaA-
gent and Andromeda inject into Explorer by invoking these API

sequences.

Dropper:MalAF reports 3 Droppers, which write a file to disk

and change its attributes for execution. Berbew,AgentTesla, andDin-
wod families drop files in the AppData and ProgramData directories

and manipulate their permissions by invoking SetFileAtrributes.

Screen Spying:MalAF reports 5 Screen spyings. We focused on

detecting screens based on the GDI API toolkit. Berbew and TeslaA-
gent families achieved 100% foretelling accuracy, which checks if

a device context handle returned by GetDC or GetWindowDC is

passed to CreateCompatibleBitmap.

2023-01-18 06:20. Page 9 of 1–13.
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Figure 5: The performance of MalAF with different threshold 𝜏 .
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Figure 6: The performance of MalAF with different |D|.

Persistence:We find that most malware persists by infecting

the registry. MalAF reports 7 Persistence attacks, which compare

the registry key handle returned by RegOpenKey or RegSetValue

with the input to RegSetValue. Specifically, as shown in Table 4, the

foretelling accuracy of the Andromeda and WannaCrypt families

reaches 100%, and the path matching percentage is also the highest.

C&C Communication: MalAF reports 10 C&C Communica-

tion attacks by tracking the WinINET APIs like InternetCheckCon-

nectionA and InternetConnect. In particular, we concretized their

domain and IP address parameters. MalAF foretells with 100% accu-

racy that the Rokrat and AgentTesla families are about to perform a

C&C communication attack. Concretely, Rokrat uses dropbox.com
to communicate, and AgentTesla uses a hardcoded IP address and a

gmail account to communicate externally.

Network Scan:MalAF reports 8 Network Scan by monitoring

the APIs such as Socket and listen. listen is a server that listens to

the socket after invoking socket and bind. Specifically, as shown in

Table 4, the path matching percentage and foretelling accuracy of

Andromeda, AveMaria, Sality, and Mydoom families all reach 100%.

Information Collection: Most malware illegally collects de-

tailed information about the victim host, including the operating

system and hardware. Information Collection is easier to obtain

and thus has the best foretelling. MalAF reports 8 Information

Collections, in which the Berbew,WannaCrypt, and AgentTesla fam-

ilies achieved 100% accuracy. They invoke the GetSystemInfo and

GetSystemWindowsDirectoryW APIs to get system information.

5.6 Parameter Sensitivity Analysis

In this subsection, we investigate the sensitivity of several essen-

tial parameters in MalAF. We mainly focus on these parameters,

including the Pearson correlation coefficient threshold (i.e., 𝜏) and

the number of expert sequences (i.e., |D|).
Pearson Correlation Coefficient Threshold 𝜏 . The threshold

of the Pearson correlation coefficient has a strongly influence on

the division of each attack slot, because we organically combine the

basis API events whose Pearson correlation coefficient is greater

than 𝜏 . As shown in Figures 5(a-c), MalAF achieves the pleasant

foretelling performance on all datasets when 𝜏 is set to 0.6. On the

contrary, as 𝜏 becomes smaller, the foretelling accuracy becomes

smaller. In the most extreme case, when 𝜏 is equal to 0, the fore-

telling accuracy is reduced by 22.18%, 16.21%, and 21.81% compared

with when 𝜏 = 0.6. These results prove that when 𝜏 is too small,

many weakly-correlated APIs are forced to be grouped together,

and the real attack path of malware is seriously disturbed, resulting

in a significant decline in foretelling performance. When 𝜏 is greater

than 0.6 in Figures 5(a-c), it can be seen that MalAF’s foretelling

accuracy would decline, because the larger the threshold, the fewer

API parameters interactions contain in 𝐶𝑡 , and MalAF’s advantage

of capturing semantically rich state representations with D-GATs

will gradually fade away, which limits the capability of MalAF.

Figures 5(a-c) also display that the larger 𝜏 , the more foretell

time, especially if 𝜏 = 1, which is the case because our proposed

MalAF does not contain strongly correlated combinations (SCC).

As a result, we find that MalAF’s foretell time at 𝜏 = 0.6 is 7.92×,
4.79×, and 6.16× faster than that at 𝜏 = 1 on the ACT-SANDBOX

dataset, Kaggle Malware dataset, and Mal-API-2019 dataset, respec-

tively. This shows that the SCC is important for boosting the time

efficiency of MalAF, which can divide a large number of basis APIs

into fewer time slots.

Number of Expert Sequences |D|. We also study the effect

of varying the number of expert API sequences in MalAF. Demon-

stration D plays an important role in recovering the attack pref-

erence of each agent’s malware. As shown in Figure 6, we find

that ACC is basically stable even when the number of the expert se-

quence is greater than 45, 60, and 30 on the ACT-SANDBOX dataset,

Kaggle Malware dataset, and Mal-API-2019 dataset, respectively.

These findings demonstrate that an sufficient number of expert API

2023-01-18 06:20. Page 10 of 1–13.



U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

MalAF : Malware Attack Foretelling From Run-time Behavior Graph Sequence Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table 5: A Summary of The Ablation Study (PSEF : parameter

sensitivity-based events filtering, IRL : inverse reinforcement

learning, DSR : dynamic state representations)

Method Metric ACT-SANDBOX Kaggle Malware Mal-API-2019

MalAF no PSEF ACC 0.9651 0.9364 0.9408

MalAF no IRL ACC 0.9145 0.8792 0.8966

MalAF no DSR ACC 0.9466 0.9026 0.9174

MalAF ACC 0.9882 0.9687 0.9739

sequences can fully capture the agent malware’s intrinsic attack

preference.

5.7 Ablation Study

Parameter Sensitivity-based Events Filtering.We first study

the contribution of the parameter sensitivity-based events filtering

on MalAF. As shown in Table 5, the foretelling performance of

MalAF is slightly superior to its variant model, MalAF no PSEF,

confirming the parameter sensitivity-based events filtering method

emphasizes picking behavioral events that contain sensitive seman-

tics, which is able to discard irrelevant noise events and effectively

improve the foretelling accuracy of MalAF. Moreover, Figure 8 re-

veals that MalAF is 3×, 2.3×, and 2.7× faster than the variant model

MalAF no PSEF on the ACT-SANDBOX dataset, Kaggle Malware

dataset, and Mal-API-2019 dataset, respectively. The possible rea-

son is that MalAF leverages the parameter sensitivity-based events

filtering method to dramatically reduce the event space by assess-

ing their security semantics from concrete API parameters, which

productively boosts the foretell efficiency of MalAF.

IRL Preference Learning. Inverse reinforcement-based prefer-

ence learning is a crucial component in MalAF; we investigate its

contribution by comparing MalAF with the variant model MalAF

no IRL. Concretely, as illustrated in Table 5, compared to MalAF no

IRL, our proposed MalAF improves 7.37% on the ACT-SANDBOX

dataset, 8.95% on the Kaggle Malware dataset, and 7.73% on the

Mal-API-2019 dataset in terms of ACC, respectively. These results

indicate that the Inverse Reinforcement-based Preference Learning

component has the ability to automatically capture the intrinsic

attack preferences of malware agents from the observed demonstra-

tions, which is beneficial for accurately foretelling the upcoming

attack of stealthy and polymorphic malware.

Dynamic Heterogeneous Graph-based State Representa-

tions.We then compare MalAF and its variant model, MalAF no

DSR, to investigate how dynamic heterogeneous graph-based state

learning can boost foretelling accuracy. From Table 5, we observe

that MalAF outperforms its variant model, MalAF no DSR. Specifi-

cally, ACCs are increased by 4.16%, 6.61%, and 5.65% on the ACT-

SANDBOX dataset, Kaggle Malware dataset, and Mal-API-2019

dataset, respectively, which evinces that the contextual interaction

semantics of the underlying API parameters can provide valuable

knowledge to help foretell a potential malware attack.

Meta-graph.We also assess the impact of different meta-graphs

on malware attack foretelling performance by progressively adding

meta-graphs to MalAF. In Figure 7, we can notice that by adding

more meta-graphs, the ACCs of theMalAF on all datasets are higher,

Figure 7: Performance change of MalAF when progressively

adding meta-graphs in terms of ACC.

Figure 8: Efficiency comparison of MalAF with its variant

models.

which visibly proves that each meta-graph is capable of captur-

ing the unique semantic information and helping capture the fine-

grained malware state representations. Specifically, we can see that

when we consider the𝑀1 in the ACT-SANDBOX dataset, the𝑀3

and𝑀5 in the Kaggle Malware dataset, and the𝑀2 and𝑀6 in the

Mal-API-2019 dataset, MalAF’s performance improves significantly.

Greedy Adaptive Dictionary (GAD) Learning.We also exam-

ine the effect of greedy adaptive dictionary (GAD) learning in our

MalAF framework by comparing MalAF with the variant model,

MalAF no GAD. As Figure 8 shown, MalAF’s foretell time is sig-

nificantly less than that of MalAF no GAD in all datasets, because

MalAF leverages the greedy adaptive dictionary learning algorithm

to project the massive malware state space to a fewer and smaller

transform domain, which can improve MalAF’s training efficiency.

Dynamic Random Walk. We finally investigate the role of

dynamic randomwalk when searching for meta-graph-based neigh-

borhoods by comparing MalAF and its variant model, MalAF no

DRW. As shown in Figure 8, MalAF incurs less overhead than

MalAF no DRW due to the fact that the dynamic random walk

solely searches the newly joined nodes in𝐺𝑡 instead of considering

all known nodes in𝐺𝑡 like the variant model MalAF no DRW, which

empirically proves that the dynamic random walk is more valuable

to real-time foretelling than the existing static random walk.

5.8 Packed Malware

We evaluated MalAF’s robustness against packers using the encoun-

tered packed malware in the ACT-SANDBOX dataset. As shown

in Table 6, we consider five different types of packers, whose com-

plexity ranges from Type-I to Type-VI [11]. Concretely, MalAF

competently foretells Type-I and III packer variants (i.e., UPX 2.90,

2023-01-18 06:20. Page 11 of 1–13.
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Table 6: Performance on Packed Malware Foretelling

Packer Packer Type # Malware ACC

UPX 2.90 Type-I 487 0.991

UPX 2.93 Type-I 315 0.982

BobSoft Mini Delphi Type-I 334 0.987

ASPack Type-III 381 0.974

Armadillo Type-VI 630 0.895

UPX 2.93, BobSoft Mini Delphi, and ASPack), while it is inferior

to analyze malware variants that use Type-VI Armadillo, judging

from the foretelling accuracy of Armadillo being only 89.5% in Ta-

ble 6. There are two reasons. First, Type-I through Type-III packers

can fully unpack in the sandbox when executing the malicious

code, thus MalAF has the ability to identify almost every malicious

capability found in Table 1. Second, the unpacking routine of the Ar-

madillo packer is interwoven with the malware payload, increasing

the complexity, which especially affects the related paths of C&C

communication and Persistence. However, MalAF cannot handle

more complex packed techniques (e.g., virtualization and repack-

aging), which account for a tiny fraction of packed malware [30].

6 RELATEDWORK

In this section, we review the works related to our study, including

malware attack prediction and inverse reinforcement learning.

6.1 Malware Attack Prediction

Malware has the characteristics of being dynamic, polymorphic,

and stealthy, making it very challenging to effectively predict future

malware attacks. In recent years, few efforts have been made to pre-

dict malware attacks. Holgado et al. [14] proposed a hidden Markov

model to predict multi-step attacks. MA-HMM consisted of a train-

ing module and a prediction module. The training phase computed

the probability matrices based on the observable IDS alerts. The

prediction module computes the best state sequence based on the

state probability using the forward-backward algorithms. To further

foretell the attack time, Abaid et al. [1] leveraged a semi-Markov

chain model to foretell the time of upcoming attacks. However, the

performance of the these methods is strongly dependent on the

collected alarms, and they are weakly equipped to handle the new

types of attacks. Moreover, Patel et al. [22] presented LightGBM, a

gradient-boosting decision tree to predict future malware attacks

on cloud computing systems. They integrated weak algorithms

such as decision trees, random forests, binary classification, and

logistic regression to predict the probability that a host would be

infected with various types of malware. To improve the prediction

performance of machine learning, Li et al. [17] proposed DeepAG,

which utilizes Bi-directional deep learning to predict the attack

paths of APT (Advanced Persistent Threats) based on system logs

and achieves higher performance than traditional Bi-LSTM. Amer

et al. [5] also proposed a robust deep learning early alarm predic-

tion model, Smell, which extracted a variety of static and dynamic

features (such as API calls, system calls, and permission sequences)

and then trained multiple LSTMs to predict whether the malicious

behavior exists in the target process based on the transformed fea-

tures. Nevertheless, these aforementioned methods can only make

a binary prediction of whether a process includes attack, instead of

what the future attack of the process is likely to be.

Recently, Alrawi et al. [4] presented FORECAST, a symbolic

analysis technique to forecast what capabilities are possible from

memory images. Although FORECAST has a promising predictive

performance, it requires the posterior probabilities of attacks occur-

ring at each node, which is not easy to tackle as the prior knowledge

for unexpected and sophisticated strategies taken by adversaries is

difficult to obtain. To address these limitations, we propose MalAF,

an effective malware attack foretelling model that can proactively

foretell malware attacks in order to stay ahead of attackers. MalAF

has the ability to automatically capture the malware agent’s at-

tack intentions from the observed demonstration, which separates

environment-specific conditions and inaccessible prior knowledge.

6.2 Inverse Reinforcement Learning

Inverse reinforcement learning (IRL) has been widely used to pre-

dict future behavior, especially in vehicle trajectory prediction tasks.

Sharifzadeh et al. [27] first leveraged Deep Q-Networks (DQNs)

to learn the rewards, which addressed the exploding state-space

problem. Saleh et al. [24] also utilized inverse reinforcement learn-

ing (IRL) and the bidirectional recurrent neural network (B-LSTM)

to predict pedestrians’ trajectories. Zhang et al. [38] designed a

two-stage neural network model that considers motion and envi-

ronment together to recover the reward function. Moreover, Zheng

et al. [42] defined an IRL-based traffic prediction model that re-

alized a parameter-sharing mechanism in a multi-agent context.

Fernando et al. [10] proposed a D-IRL framework by taking into

account various complex factors, which has proved a great success

in the autonomous driving community.

Inspired by the soaring successes of IRL on various prediction

tasks, this paper is the first attempt to introduce IRL into the secu-

rity field to solve the malware attack foretelling problem. However,

the existing IRL struggles to cope with the massive event and state

spaces of malware, so our MalAF designs a parameter sensitivity-

based events filtering, a dynamic heterogeneous graph-based state

learning, and a greedy adaptive dictionary learning to achieve a

smaller event space and a more semantically rich state space, as-

sisting in foretelling the upcoming malware attacks in real-time.

7 CONCLUSION

In this paper, we investigate the problem of malware attack fore-

telling and design a viable framework, MalAF, which deploys a

GAD-optimized IRL based on the semantically rich state sequence

to efficiently capture malware attack preference from fine-grained

API events. MalAF overcomes the challenge of exploring massively

irrelevant paths as well as bridging the semantic gap between un-

derlying API parameters and comprehensible malicious capability.

Comprehensive experimental results verify that MalAF can sig-

nificantly enhance the malware attack foretelling performance by

at least 3.01%∼4.73%, which can be used to proactively resist the

upcoming attack risks.

2023-01-18 06:20. Page 12 of 1–13.
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