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Abstract
Machine learning models are known to be vulnerable to
adversarial query attacks. In these attacks, queries are it-
eratively perturbed towards a particular class without any
knowledge of the target model besides its output. The preva-
lence of remotely-hostedML classificationmodels andMachine-
Learning-as-a-Service platforms means that query attacks
pose a real threat to the security of these systems. To deal
with this, stateful defenses have been proposed to detect
query attacks and prevent the generation of adversarial ex-
amples by monitoring and analyzing the sequence of queries
received by the system. Several stateful defenses have been
proposed in recent years. However, these defenses rely solely
on similarity or out-of-distribution detection methods that
may be effective in other domains. In the malware detection
domain, the methods to generate adversarial examples are
inherently different, and therefore we find that such detec-
tion mechanisms are significantly less effective. Hence, in
this paper, we present MalProtect, which is a stateful defense
against query attacks in the malware detection domain. Mal-
Protect uses several threat indicators to detect attacks. Our
results show that it reduces the evasion rate of adversarial
query attacks by 80+% in Android and Windows malware,
across a range of attacker scenarios. In the first evaluation of
its kind, we show that MalProtect outperforms prior stateful
defenses, especially under the peak adversarial threat.

CCS Concepts: • Computingmethodologies→Machine
learning; • Security and privacy;

Keywords: adversarial machine learning, malware detection,
security

1 Introduction
Machine learning has offered enormous capabilities [6, 27,
46] leading to the large-scale use of Machine-Learning-as-
a-Service (MLaaS) (e.g., [4, 29, 91]). This allows users to
leverage the power of remotely-hosted ML models by re-
questing predictions from them [107]. The widespread use
of these services means that their reliability and security is
paramount, especially considering the threat posed by adver-
sarial machine learning [36, 37, 72, 84, 95], as recent work
has shown that these systems are vulnerable to adversar-
ial query attacks [13, 16, 22, 24, 48, 61, 77, 82]. With query
attacks, an attacker iteratively perturbs a malware sample
based on feedback from the target model that includes its
predicted output. Using the feedback, the perturbations to
the input sample are tuned across the queries to observe how

the target model responds until, eventually, the truly mali-
cious sample is classified as benign (i.e., goodware) [22, 82].
To deal with the adversarial ML threat, several defenses
have been proposed based on a variety of approaches (e.g.,
[21, 75, 78, 83, 87, 95, 98, 99, 102, 103]). However, most of
these approaches have been shown to be ineffective against
query attacks in several domains [16, 22, 48], including mal-
ware detection [77, 82, 84].

Recentwork has stressed that systemsmustmonitor queries
to identify hazards such as adversarial attacks [47]. In fact,
ML-based anomaly detection has been regarded as essential
to detect the misuse of ML-based systems [17]. To this end,
stateful defenses have been proposed to protect ML predic-
tion models against query attacks [24] by offering greater
system awareness than stateless defenses. This is achieved
by monitoring queries received by the system. Researchers
have hypothesized that sequences of adversarial queries are
often abnormally similar to each other, unlike sequences
of legitimate queries [24, 51, 60], and often do not fit their
distribution [11, 51, 52]. Hence, stateful defenses analyze the
sequence of queries made to the system, such as the similar-
ity of feature vectors representing an image. Several stateful
defenses have been proposed (e.g., [24, 51, 60, 69, 108]), how-
ever, prior to our work, they have not been tested in the
malware detection domain, where query attacks can cripple
prediction models [82, 84]. The malware detection domain
is significantly different from other domains, with more con-
straints imposed on attackers regarding the discrete repre-
sentation of feature vectors and the preservation of malicious
functionality when generating adversarial examples [14, 84].
Therefore, attackers use techniques that are different from
those in other domains to generate adversarial examples
[77, 82]. Consequently, stateful defenses that have been ap-
plied to other domains may be ineffective when tested in the
malware detection domain.
Hence, in this paper, we present MalProtect, which is a

model-agnostic stateful defense against query attacks in the
malware detection domain. Upon receiving a new query,
MalProtect employs several threat indicators that conduct
an analysis of the queries to predict if there is an attack
in progress. Across Android and Windows, we show that
MalProtect reduces the evasion rate of query attacks by
80+%, and we compare this to the meager performance of
prior stateful defenses across a range of attack scenarios
in the first evaluation of its kind. At a high level, we show
that MalProtect produces interpretable decisions. We also
show that, despite being designed to protect against query
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attacks, MalProtect affords a degree of protection against
other types of attacks, such as transferability attacks. Fur-
thermore, we demonstrate that an adaptive attacker — with
complete knowledge of MalProtect — cannot achieve signifi-
cant evasion. In summary, we make two key contributions:

1. We propose the first stateful defense against adver-
sarial query attacks in the malware detection domain.
Our defense, MalProtect, uses several threat indica-
tors to reliably detect query attacks and prevent the
generation of adversarial examples.

2. We provide the first evaluation of several existing state-
ful defenses applied to the ML-based malware detec-
tion domain. The results show that MalProtect signifi-
cantly reduces the evasion rate of query attacks across
Android and Windows under a range of threat models
and attacker scenarios.

2 Background & Related Work
ML-based Malware Detection.ML-based malware detec-
tion has rapidly grown in popularity. It allows for unseen
and unknown threats to be discovered and offers perfor-
mance that surpasses rule-based and signature-based ap-
proaches [84]. ML-based malware detection classifiers decide
if a query is benign (i.e., goodware) or malware. These mod-
els are trained on binary feature vectors representing the
presence or absence of features in executables [45, 84]. The
quality of the predictions produced is determined by these
features, which can include the usage of API calls, the net-
work addresses accessed, or the libraries used [2, 32, 44, 84].
Adversarial ML Attacks. However, ML models (i.e., pre-
diction models) are vulnerable to adversarial ML attacks.
Specifically, adversarial examples can be developed by an
attacker, which are queries that are designed to evade a
classifier. Even without direct access to the target model,
an attacker can perturb a malware sample to have it classi-
fied as benign and evade the prediction model [95], through
transferability attacks and query attacks. With transferabil-
ity attacks, an estimation of the target model is developed
and attacked in anticipation that any generated adversarial
examples will transfer to the target model [72]. This is based
on the transferability property of adversarial examples [95].

Meanwhile, query attacks generate an adversarial example
by iteratively perturbing an input sample towards the desired
class based on feedback received from the target model until
evasion is achieved [22, 84]. This attack can be conducted
in a complete black-box manner without any knowledge
about the target model besides the predicted outputs. In the
image recognition domain, recent work has introduced sev-
eral query attacks using techniques such as gradient and
decision boundary estimation that perturb the continuous
feature-space of images [13, 16, 22, 24, 48, 61]. However,
in the malware detection domain, the functionality of soft-
ware executables must be preserved, and discrete feature

vectors must be used when generating adversarial examples
[45, 82, 84]. For example, a feature representing an API call
(e.g., 𝐶𝑟𝑒𝑎𝑡𝑒𝐹𝑖𝑙𝑒 ()) cannot be perturbed continuously by an
attack (e.g.,𝐶𝑟𝑒𝑎𝑡𝑒𝐹𝑖𝑙𝑒 ()+0.05); rather, a completely different
feature must be used [82] that offers the same functionality.
Therefore, software transplantation-based techniques have
been proposed to achieve evasion that involve using features
from benign samples to perturb a malware sample [77, 82].
Defenses Against Adversarial ML.Many defenses against
adversarial attacks have been proposed. These include gradient-
based [75, 98], feature-based [99, 103] and randomization-
based [87, 102] approaches, as well as techniques based on
adversarial training [95, 98]. Most approaches are single-
model defenses, where an individual model is made robust
[71]. Ensemble defenses and moving target defenses have
also been proposed, which use several models with some par-
ticular method to return predictions [5, 28, 30, 80, 87, 89, 92].
However, recent studies [10, 19, 78] have shownmost of these
defenses to be ineffective against query attacks [24, 82, 84].
In fact, as these defenses are stateless, they cannot store, mon-
itor, or analyze the sequence of queries received, allowing
query attacks to succeed.
Stateful Defenses. To protect ML prediction models against
query attacks, stateful defenses have been proposed [11, 24,
24, 51, 52, 60, 65]. In essence, these stateful defenses conduct
a form of anomaly detection, which has been recommended
in recent studies as a method to combat adversarial query
attacks [17, 40, 47]. It has been hypothesized that because
query attacks iteratively perturb an input sample, they pro-
duce a sequence of abnormal queries that have high simi-
larity or are outside the distribution of legitimate queries.
Figure 1 shows that stateful defenses retain the sequence
of queries received by the system and analyze them using
different techniques to detect attacks. This is similar to intru-
sion detection systems and firewalls that monitor network
activity to detect threats [15].
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Figure 1. Overview of a stateful defense.

Limitations of Existing Stateful Defenses. A number
of stateful defenses have been proposed in recent years
[24, 51, 52, 60, 108]. Subsequent work has identified several
limitations of these defenses, including insufficient similar-
ity detection mechanisms, poor maintenance of the query
history, and weaknesses of account-based detection, among
others [47, 60, 69, 108]. More specifically, Chen et al.’s State-
ful Detection approach (SD) is an account-based defense that
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maps a user’s query to a feature vector and measures the
average distance between it and its k-nearest neighbors. If
this is below a threshold, an attack is detected, which resets
the query history and cancels the user’s account. However,
this can be defeated by a Sybil attack, where an attacker
uses multiple accounts in the attack [34, 104]. Moreover,
inspecting queries per-account limits the detection scope
[60]. Alternatively, Li et al. present Blacklight [60], which
measures the similarity of queries for all users using the 𝐿2
distance (i.e., Euclidean distance), which is a type of 𝐿𝑝 norm
[20]. An attack is detected if the Euclidean distance between
several queries (represented by hashes) is below the thresh-
old. Other distance-based defenses have been proposed (e.g.,
[65]), though these can all be evaded when queries are in-
tentionally designed to be dissimilar [47] or through query-
blinding attacks [108].
Out-of-distribution (OOD) detectors have also been pro-

posed to combat query attacks. These check whether a query
belongs to the distribution of the target model’s training data
[11, 52]. When OOD queries are detected, Kariyappa et al.
propose returning inconsistent labels to those detected OOD
queries [52]. However, an attacker may be able to construct
adversarial queries that remain within the required distri-
bution [107, 108]. PRADA [51] is a defense against model
extraction attacks, which is a related problem for which other
stateful defenses have also been proposed as solutions (e.g.,
[108]). Prior work has found that it can also detect evasion
attacks [24]. PRADA is based on the assumption that the 𝐿2
distance among benign queries follows a normal distribu-
tion. This is monitored using the Shapiro-Wilk normality
test. However, manipulation of the query distribution has
been found to evade it [24, 107].

Our defense, MalProtect, is model-agnostic allowing it to
be used with any underlying prediction model. To detect
attacks, it utilizes techniques beyond basic similarity and
OOD detection, such as analyzing the autoencoder loss of
queries, examining the distribution of enabled and shared
features across queries, and more. We next present the threat
model we consider for our work, followed by a detailed
description of MalProtect.

3 Threat Model
In our work, attackers aim to evade a feature-based ML
malware detection classifier so that their malicious queries
are misclassified as benign. This is a well-established threat
model in this domain [14, 44, 45, 88, 94, 105].
Target Model. The target model is a remotely-hosted mal-
ware classification system that predicts whether an input
sample belongs to the benign or malware class. We refer
to the classification system as the oracle 𝑂 . The oracle has
two principle components: the underlying classifier 𝐹 (i.e.,
the prediction model) and the MalProtect component that
protects 𝐹 by analyzing queries to detect attacks (see Sec-
tion 4 later). To train 𝐹 , input samples are represented as

binary feature vectors using the features that are provided
by a dataset. With the features 1...𝑀 , a feature vector 𝑋 can
be constructed for each input sample such that 𝑋 ∈ {0, 1}𝑀 ,
similar to previous work [45, 78, 80]. The presence or ab-
sence of a feature 𝑖 is represented by either 1 or 0 within 𝑋 .
Like prior work on ML-based malware detection [45, 58, 82],
the features we employ in our work include, among oth-
ers, libraries, API calls, permissions, and network addresses;
these are provided by the datasets we use (see Section 5 later).
With their associated class labels, several feature vectors can
be used to train the binary classification model that we refer
to as the classifier 𝐹 . Then, when a user makes a query to 𝑂 ,
a prediction is made and returned. For the predicted outputs,
we use 1 for the malware class and 0 for the benign class.
The oracle 𝑂 returns completely scoreless feedback [48].
Attacker’s Goal. The goal of the attacker is to generate an
adversarial example 𝑋 ′ from a malware sample 𝑋 to evade
the oracle𝑂 and obtain a benign prediction. Suppose𝑂 : 𝑋 ∈
{0, 1}𝑀 and we have a function 𝑐ℎ𝑒𝑐𝑘𝐹𝑢𝑛𝑐 () to check the
functionality of 𝑋 . We can summarize this as:
𝑐ℎ𝑒𝑐𝑘𝐹𝑢𝑛𝑐 (𝑋 ) = 𝑐ℎ𝑒𝑐𝑘𝐹𝑢𝑛𝑐 (𝑋 ′);𝑂 (𝑋 ) = 1;𝑂 (𝑋 ′) = 0 (1)

Attacker Capabilities & Knowledge. We model three
types of attackers that have been featured in prior work
[14, 48, 55, 74, 80].We consider the gray-box attacker who has
limited knowledge, has access to the same training data as the
classifier 𝐹 and is aware of the feature representation and the
statistical representation of the features across the dataset.
However, the attacker is unaware of 𝐹 ’s parameters, config-
urations, and other pertinent information. This represents a
scenario similar to when some model data has been leaked.
To perform query attacks, this attacker applies perturbations
to the feature vector through a software transplantation-
based approach [77, 82], guided by their knowledge of the
dataset. In contrast, the zero-knowledge black-box attacker
can only observe the predictions received for their queries
and has no information about the target model but does have
some information pertaining to the kind of feature extraction
performed (e.g., the static analysis that a malware detection
classifier may consider). This attacker also uses a software
transplantation-based approach, but with considerably less
information. Neither attacker is aware that MalProtect is a
part of 𝑂 . We also consider an adaptive attacker (white-box
attacker) who has complete knowledge of the target model
and knows that MalProtect is in place. Therefore, this at-
tacker tries to evade all components of the oracle 𝑂 with a
specific, tailored attack.
We assume that all attackers possess ample computing

power and resources to submit thousands of queries. Fur-
thermore, unlike previous work [24, 51], we assume that at-
tackers may control multiple user accounts and IP addresses,
as in a Sybil attack [34, 104].
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4 MalProtect
MalProtect is designed to protect ML models against adver-
sarial query attacks that take place in the malware detec-
tion domain’s feature-space. Figure 2 shows that MalProtect
forms a layer of protection that monitors queries before they
reach the predictionmodel 𝐹 , which is theML-basedmalware
detection classifier to be protected. This allows MalProtect
to detect adversarial queries that are designed to evade the
classifier.

When a user submits a query (Step 1), MalProtect employs
several threat indicators to analyze the sequence of queries
for attack detection (Step 2). This is similar to a system that
makes decisions using data from multiple sensors [47]. The
threat indicators use different criteria, principally driven by
an anomaly detection-based approach. This includes exam-
ining aspects such as the autoencoder loss of queries, the
distance between queries, the features shared across queries,
and whether other characteristics of queries fit within dif-
ferent distributions. Based on the state of the query history,
each indicator produces a score that reflects the likelihood
of an attack in progress according to that indicator, with ad-
versarial queries expected to cause higher scores. A decision
model then takes the indicator scores as its input and predicts
whether there is an attack in progress (Step 3). If an attack
is detected, MalProtect takes some defensive action. If no at-
tack is detected, the prediction model 𝐹 returns a prediction
for the user’s query (Step 4). Not only do the scores assist in
interpreting how MalProtect produces a particular decision,
but as we show later, each threat indicator can be analyzed
to determine its influence on the final decision. Next, we
provide details about each of MalProtect’s core components.
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Figure 2. Overview of MalProtect.

4.1 Query History
MalProtect analyzes the query history to detect adversar-
ial behavior. When a user requests a prediction for their

query 𝑞𝑙𝑎𝑡𝑒𝑠𝑡 , it is appended to the query history 𝑄 . Queries
can be represented more sparsely in the malware detection
domain to reduce storage overheads, which has been cited
as an issue in other domains [60]. The depth of analysis
performed by MalProtect and the size of 𝑄 is controlled by
the resources possessed by the defender when MalProtect
is deployed, but, as we show later in Section 10, MalProtect
needs very little spatial and computational resources to offer
a very good performance. Unlike other stateful defenses that
reset the query history once they reach capacity (e.g., [24]),
MalProtect retains queries as a sliding window to maximize
its detection capability. Finally, MalProtect does not discern
between queries from different users, as an attacker can con-
duct a Sybil attack to evade account-based defenses [34, 104].

4.2 Indicators for Analyzing Query History
After adding 𝑞𝑙𝑎𝑡𝑒𝑠𝑡 to 𝑄 , MalProtect analyzes the query
history using multiple threat indicators to detect attacks
through an anomaly detection-based approach. In conven-
tional anomaly detection, thresholds are employed to assess
whether a sample meets the criteria for being abnormal.
However, with MalProtect, we use a data-driven approach
where the weights of each indicator are learned by a decision
model to predict an attack. That is, instead of each indicator
deciding if an attack is taking place, each indicator produces
a score between 0 and 1 that reflects the likelihood of an
attack according to its criteria. Scores are then aggregated
into a score vector and passed to a decision model that de-
cides if an attack is in progress. This allows for some degree
of interpretability too, as we show later, because we can
understand both which indicators seem to play the biggest
role in the decision model and which indicators produce
the highest scores (giving clues about what is anomalous).
MalProtect is based on the principle that adversarial queries
are expected to cause higher indicator scores as they are
anomalous compared to legitimate queries and the training
data distribution. To conduct the analysis and produce scores,
some indicators use standard anomaly detection techniques,
such as the empirical rule [79], to assess whether a query
fits the distribution of data. Meanwhile, other indicators use
information about the training data to examine how much
queries deviate from various measures. We next present each
indicator:
Indicator 1. Distance between queries: This indicator as-
sesses the similarity of 𝑞𝑙𝑎𝑡𝑒𝑠𝑡 to other queries in 𝑄 , which is
the primary method adopted by some stateful defenses (e.g.,
[24, 60]). A smaller distance between queries is an indica-
tion of iterative perturbations during a query attack as an
attacker makes modifications to their queries to assess how
the target model responds [22, 24]. This indicator therefore
examines how anomalous the minimum distance between
𝑞𝑙𝑎𝑡𝑒𝑠𝑡 and other queries in 𝑄 is (represented by𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑄).
Because the malware detection domain uses binary feature
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vectors (as opposed to other domains like image recognition),
it has been suggested that the 𝐿0 distance is the most appro-
priate distance measure [20, 78], as it measures the number
of features that are different between two feature vectors.
Other norms such as 𝐿∞ would always have a distance of 1
if at least one change was made [78].
To assess the potential abnormality of 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑄 with-

out using a threshold and also to normalize it between 0
and 1, we put 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑄 in the context of the average 𝐿0
distance of all samples in the training data (represented by
𝑎𝑣𝑔𝐷𝑖𝑠𝑡𝐷). If 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑄 is significantly below this, it im-
plies that 𝑞𝑙𝑎𝑡𝑒𝑠𝑡 is similar to another query in 𝑄 beyond
the norm. The score for this indicator is based on the per-
centage change between𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑄 and 𝑎𝑣𝑔𝐷𝑖𝑠𝑡𝐷 . A smaller
percentage change means that there exists a query whose
similarity to 𝑞𝑙𝑎𝑡𝑒𝑠𝑡 is significantly lower than the average
of the training data (𝑎𝑣𝑔𝐷𝑖𝑠𝑡𝐷). So that a higher threat is
represented by a higher score value, we negate the result.
Thus, the score is calculated as follows:

𝑆1 = −1 · (𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑄 − 𝑎𝑣𝑔𝐷𝑖𝑠𝑡𝐷) / 𝑎𝑣𝑔𝐷𝑖𝑠𝑡𝐷 (2)

Indicator 2. Enabled features shared across queries: This
indicator assesses whether 𝑞𝑙𝑎𝑡𝑒𝑠𝑡 shares a significant num-
ber of enabled features with another query in 𝑄 beyond the
norm. The rationale behind this is that an attacker could en-
able unused features in 𝑞𝑙𝑎𝑡𝑒𝑠𝑡 to intentionally increase the
𝐿0 distance between queries in order to evade basic similarity
detection (e.g., while trying to evade Indicator 1). However,
some features must always remain enabled to preserve the
original malicious functionality across a query attack. Thus,
queries with the same enabled features would imply similar-
ity specifically in this domain. Therefore, the highest number
of enabled features shared between 𝑞𝑙𝑎𝑡𝑒𝑠𝑡 and another query
in 𝑄 is calculated as𝑚𝑎𝑥𝑆ℎ𝑎𝑟𝑒𝑑𝑄 .

We then use the average number of enabled features shared
between samples in the training data (𝑎𝑣𝑔𝑆ℎ𝑎𝑟𝑒𝑑𝐷) to as-
sess to what extent𝑚𝑎𝑥𝑆ℎ𝑎𝑟𝑒𝑑𝑄 may be abnormal. This is
achieved by calculating the deviation of𝑚𝑎𝑥𝑆ℎ𝑎𝑟𝑒𝑑𝑄 from
this mean, as a percentage change. A higher value indicates
that 𝑞𝑙𝑎𝑡𝑒𝑠𝑡 shares an abnormally high number of enabled
features with some other query in𝑄 considering the training
data’s distribution. The score is calculated as follows:

𝑆2 = (𝑚𝑎𝑥𝑆ℎ𝑎𝑟𝑒𝑑𝑄 − 𝑎𝑣𝑔𝑆ℎ𝑎𝑟𝑒𝑑𝐷) / 𝑎𝑣𝑔𝑆ℎ𝑎𝑟𝑒𝑑𝐷 (3)

Indicators 3A & 3B. Number of enabled features: An
attacker could rapidly traverse the decision boundary by
enabling a substantial number of benign features in 𝑞𝑙𝑎𝑡𝑒𝑠𝑡
at once. An anomalous number of enabled features could in-
dicate an attack attempt. The indicator 3A is the percentage
change between the number of enabled features in 𝑞𝑙𝑎𝑡𝑒𝑠𝑡
(|𝑞𝑙𝑎𝑡𝑒𝑠𝑡 |) and the average number of enabled features in train-
ing data samples (𝑎𝑣𝑔𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝐷). A large percentage change
implies that far more features are enabled in𝑞𝑙𝑎𝑡𝑒𝑠𝑡 compared

to 𝑎𝑣𝑔𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝐷 . The score is calculated as follows:
𝑆3𝐴 = ( |𝑞𝑙𝑎𝑡𝑒𝑠𝑡 | − 𝑎𝑣𝑔𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝐷) / 𝑎𝑣𝑔𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝐷 (4)

The indicator 3A only assesses whether |𝑞𝑙𝑎𝑡𝑒𝑠𝑡 | is anoma-
lous considering the training data and does not compare
with other queries in 𝑄 . However, it is also useful to assess
whether |𝑞𝑙𝑎𝑡𝑒𝑠𝑡 | is anomalous considering the distribution of
𝑄 regardless of the training data, similar to previous works
(e.g., [11, 51, 52]), as most queries are expected to be legiti-
mate. Therefore, we also use the indicator 3B, which assesses
to what extent the number of enabled features in 𝑞𝑙𝑎𝑡𝑒𝑠𝑡 is
anomalous considering the queries in 𝑄 . This uses the em-
pirical rule (i.e., 3-𝜎 rule) [79], which is a standard technique
in anomaly detection. The score is calculated as the percent-
age change from 3 standard deviations of the mean using
the following equation, where 𝜇𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑄 is the mean num-
ber of enabled features of queries in 𝑄 and 𝜎𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑄 is the
standard deviation:

𝐶 = 𝜇𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑄 + (𝜎𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑄 × 3) (5)
𝑆3𝐵 = ( |𝑞𝑙𝑎𝑡𝑒𝑠𝑡 | −𝐶) /𝐶 (6)

Indicators 4A & 4B. Distribution similarity via autoen-
coder reconstruction loss: An autoencoder is a neural net-
work where the input and output are the same but the hidden
layers have fewer neurons [86]. This limits the amount of
information that can travel through the model, requiring it to
learn a compressed version of the input. Input samples that
belong to the distribution of the autoencoder’s training data
will produce a smaller distance between the input and output
representations (known as the reconstruction loss) [70]. Thus,
an autoencoder trained on legitimate queries will produce
a significantly higher reconstruction loss for an adversarial
query. Other novelty detection techniques, such as one-class
SVMs, have been found to be outperformed by autoencoders
in this task in other domains [41].
Hence, indicator 4A’s score is the percentage change be-

tween the reconstruction loss of 𝑞𝑙𝑎𝑡𝑒𝑠𝑡 (𝑅𝑒𝑐𝐿𝑜𝑠𝑠𝑞𝑙𝑎𝑡𝑒𝑠𝑡 ) and
the maximum reconstruction loss observed of training data
samples (𝑚𝑎𝑥𝑅𝑒𝑐𝐿𝑜𝑠𝑠𝐷). A higher percentage change would
suggest a significant increase from the maximum reconstruc-
tion loss observed for training data samples, and thus an
indication that 𝑞𝑙𝑎𝑡𝑒𝑠𝑡 may be adversarial. The score is calcu-
lated as follows:

𝑆4𝐴 = (𝑅𝑒𝑐𝐿𝑜𝑠𝑠𝑞𝑙𝑎𝑡𝑒𝑠𝑡 −𝑚𝑎𝑥𝑅𝑒𝑐𝐿𝑜𝑠𝑠𝐷) /𝑚𝑎𝑥𝑅𝑒𝑐𝐿𝑜𝑠𝑠𝐷 (7)

As with Indicator 3B, we also consider the case where
𝑞𝑙𝑎𝑡𝑒𝑠𝑡 is only compared to other queries in 𝑄 regardless of
the training data distribution. In this way, the indicator 4B
uses the empirical rule to assess whether the reconstruction
loss of 𝑞𝑙𝑎𝑡𝑒𝑠𝑡 is anomalous considering the queries in𝑄 . The
score is calculated as a percentage change from 3 standard
deviations using the following equation, where 𝜇𝑅𝑒𝑐𝐿𝑜𝑠𝑠𝑄 is
the mean reconstruction loss of queries in 𝑄 and 𝜎𝑅𝑒𝑐𝐿𝑜𝑠𝑠𝑄
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is the standard deviation:
𝐶 = 𝜇𝑅𝑒𝑐𝐿𝑜𝑠𝑠𝑄 + (𝜎𝑅𝑒𝑐𝐿𝑜𝑠𝑠𝑄 × 3) (8)

𝑆4𝐵 = (𝑅𝑒𝑐𝐿𝑜𝑠𝑠𝑞𝑙𝑎𝑡𝑒𝑠𝑡 −𝐶) /𝐶 (9)

4.3 Attack Detection
Once scores are produced by each indicator, they are aggre-
gated into the score vector 𝑆 . The next step is to make a
final decision using all the scores. Static techniques such as a
weighted sum model or sum of squares model can combine
several individual scores [38]. However, a key drawback of
these methods is that the weights for each indicator (i.e., how
much each indicator contributes to the overall score) must
be selected manually. Moreover, static aggregation models
cannot detect trends and patterns in data.
Hence, MalProtect uses a decision model (e.g., a neural

network) that makes a prediction on the score vector. Each
threat indicator is a feature of this model, with the predicted
output representing whether there is an attack in progress.
Importantly, MalProtect allows analysts to understand why
it has made a particular decision with its scoring system.
Analysts can further understand the influence of each threat
indicator on the final prediction by examining the global fea-
ture importance of the decision model. Later, in Section 5, we
present the decision models that we evaluated, and we then
discuss how each threat indicator influences the predictions
made by these models in Section 8.

4.4 Defensive Action & Prediction
If no attack is detected by the decisionmodel,𝑞𝑙𝑎𝑡𝑒𝑠𝑡 is passed
on to the classifier 𝐹 . The classifier makes a prediction of
whether 𝑞𝑙𝑎𝑡𝑒𝑠𝑡 is benign or malware, which is then returned
to the user. That is, if the latest query received is not consid-
ered to be part of an attack by MalProtect, the query is then
forwarded to the ML classifier trained to decide whether an
input sample is benign or malware. Note that the classifier
can itself be hardened using techniques such as adversarial
training (as shown later). MalProtect only acts as a filter,
which only lets what it considers to be legitimate queries to
be passed on to theMLmodel used for malware classification.

If MalProtect does detect an attack, a defensive action can
be taken, such as returning a specific prediction, returning
inconsistent labels, notifying system administrators, ban-
ning user accounts, or rejecting further user queries. In this
paper, if an attack is detected, we take the defensive action
of returning amalware prediction. This is as if the query had
actually been forwarded to the classifier and that had been
its output. This means that an attacker would encounter fail-
ure throughout the course of the attack, believing that their
query is being consistently classified as malware, without
necessarily knowing about MalProtect’s presence. However,
a very interesting line of future work would be to study what
defensive actions could be more or less effective depending
on the specific setting.

5 Experimental Setup
Datasets. Sampling from the true distribution is a challeng-
ing and open problem in many ML-based security appli-
cations [7, 9]. Particularly, the lack of publicly accessible,
up-to-date datasets in the malware detection domain is a
well-known issue that limits the remits of academic research
in this domain. To mitigate this, we use three datasets rep-
resentative of different architectures as well as collection
dates and methods that have been used in a variety of stud-
ies (e.g., [12, 31, 45, 50, 54, 76, 77, 101]). The datasets we use
are AndroZoo about Android malware [3], SLEIPNIR about
Windows malware [2], and DREBIN about Android malware
[8]. As we show later, the results across each of the datasets
are consistent with each other, indicating that MalProtect’s
performance transcends the characteristics and nuances of
the datasets.
The AndroZoo dataset [3] contains Android apps from

2017 to 2018, offering apps from different stores and markets
with VirusTotal summary reports for each. Similar to prior
work [66, 76, 77], we consider an app malicious if it has 4 or
more VirusTotal detections, and benign if it has 0 VirusTotal
detections (with apps that have 1-3 detections discarded). The
dataset contains ≈ 150K recent applications, with 135,859
benign and 15,778 malicious samples. To balance the dataset,
we use 15,778 samples from each class. Meanwhile, SLEIPNIR
consists of 19,696 benign and 34,994 malware samples. This
dataset is derived from Windows API calls in PE files parsed
by LIEF [96]. As our work is in the feature-space, we use
SLEIPNIR as a representation of Windows out of simplicity
due to its feature space, which is binary. This permits a
more precise comparison between the Android andWindows
datasets. We use 19,696 samples from each class. Meanwhile,
DREBIN is based on extracted static features from Android
APK files. The dataset contains 123,453 benign and 5,560
malware samples, from which we use 5,560 samples from
each class. As in prior work [32, 45], and for completeness,
we use a large number of features for each dataset, i.e., 10,000
for AndroZoo, 22,761 for SLEIPNIR, and 58,975 for DREBIN.

Initially, the datasets are partitioned with an 80:20 ratio for
training and test data according to the Pareto principle. This
training data is partitioned again into training and validation
data using the same ratio, producing a 64:16:20 split that has
been extensively used in prior work (e.g., [56, 63, 81]). We use
the training data to construct the prediction models used in
our evaluation. Meanwhile, we use a partition of randomly-
chosen malware samples from a subset of the test data as
the input samples for the query attacks, with 234 samples
for AndroZoo, 230 for SLEIPNIR, and 229 for DREBIN.
We also consider the well-established guidelines for con-

ducting experiments related to malware detection [85]. As
the prediction models in our evaluation decide whether an
input sample is benign or malicious, we deem it necessary
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to retain benign samples in the datasets. As our models sep-
arate benign inputs from malicious ones, we do not strictly
balance datasets over malware families but instead over the
positive and negative classes. We randomly sample unique
samples from each class to appear in the training and test
data without repetition [2, 78, 84].
MalProtect Configurations.We develop two MalProtect
configurations to showcase our defense’s capabilities. Each
configuration uses a different decision model to predict an
attack based on the indicator scores. For both configurations,
we cap the query history size at 10,000. Later in Section 10,
we discuss the overheads related to this.

To build each MalProtect configuration, we follow the
steps described in Section 4 for each dataset. For some in-
dicators, we derive certain values from the dataset that are
needed to assess queries (e.g., 𝑎𝑣𝑔𝐷𝑖𝑠𝑡𝐷 , which is the average
𝐿0 distance of samples in the training data). Then, to train
each decision model, a defender could use real-world attack
and score data. However, in its absence, a synthetic dataset
can be used. Therefore, we develop a synthetic dataset of
1000+ labelled samples. For this, we initialize the query his-
tory to simulate past user activity with a randomly-chosen
set of input samples from the training data. We then supply
a range of queries (both legitimate and adversarial, as part
of attacks) from our training data to have each indicator pro-
duce scores. This produces the synthetic dataset, where each
threat indicator is a feature and the class labels represent the
true state of the system at the time (whether it was under at-
tack (1) or not (0)). As decisionmodels, we then train a logistic
regression model for one configuration (MalProtect-LR) and a
neural network for another (MalProtect-NN) (see Appendix A
for architectures) to predict if an attack is in progress when
given a score vector. Theoretically, both models should offer
accurate predictions [35].
Other Stateful Defenses. We compare MalProtect with
three other stateful defenses that have been applied in other
domains to detect query attacks. The 𝐿0 defense is based
on similarity detection using 𝐿𝑝 norms (e.g., [60]); PRADA
[51]; and Stateful Detection (SD) [24]. Although we keep the
implementations of these stateful defenses as close to the
original as possible (e.g., procedures and parameters), tech-
niques applicable to other domains (e.g., encoding queries
to generate a feature vector) are not applicable to the mal-
ware detection domain. We provide the technical details of
each stateful defense in Appendix B. Recall that stateful de-
fenses themselves do not provide predictions; they protect
prediction models.
Prediction Models (Non-stateful Defenses). In our eval-
uation, we use six non-stateful defenses as the prediction
models. Rather than using vanilla models, we use single-
model defenses, ensemble defenses, and moving target de-
fenses as the prediction models to demonstrate their vul-
nerability to attacks despite being defenses in their own
right. Each prediction model is constructed according to the

procedures outlined in their original papers using the train-
ing data for each dataset (see Appendix C for information
about architectures). For single-model defenses, we test a
neural network with defensive distillation (NN-DD) [75]. We
use several white-box attacks to develop adversarial exam-
ples for a set of vanilla models (see later subsection), which
are used to adversarially-train a neural network (NN-AT).
We adversarially-train with a quantity of adversarial exam-
ples that is 25% of the size of the training data [98]. For
ensemble defenses, we test majority voting and veto voting
[26, 80, 80, 89, 100, 106]. For moving target defenses, we eval-
uate Morphence [5] and StratDef [80]. Each prediction model
is evaluated against attacks as-is; that is, in a non-stateful
setup. Then, each prediction model is combined with each
stateful defense, allowing us to evaluate different setups.
Performing Query Attacks. When generating an adver-
sarial example in the malware detection domain, there are
specific constraints that must be considered. Primarily, the
malicious functionality of the original malware sample must
remain intact, but additionally, the feature vectors must re-
main discrete (i.e., consist of 0s and 1s) as they represent
the presence or absence of each feature. Query attacks de-
signed for other domains (e.g., [22]) do not consider these
constraints and therefore produce ineffective adversarial ex-
amples for this domain [82] (see Appendix G). In themalware
detection domain, however, query attacks can use software
transplantation-based techniques to perturb the features of a
malware sample using features from benign “donor” samples.
In our evaluation, we modify query attack strategies that
have been proven successful in this domain [82] (see Appen-
dix F for full details). Prior to starting an attack, we initialize
the query history to simulate past user activity (as explained
before). Then, using malware samples from our test set, we
apply each attack strategy accordingly under each threat
model to perturb malware feature vectors. We use the pa-
rameter 𝑛𝑚𝑎𝑥 to govern the maximum number of allowed
queries permitted, where the transplantation of features con-
tinues until the target model is evaded, 𝑛𝑚𝑎𝑥 is reached, or
the donor features are exhausted. We apply a procedure to
preserve the functionality of the original malware sample in
the feature-space. For this, the valid perturbations for each
dataset are determined by consulting industry documenta-
tion and prior work [1, 2, 54, 57, 58, 77, 80]. If a feature has
been modified invalidly — that is, the functionality has not
been preserved in the feature-space — it is restored to its
original value. This is to offer a lower bound of functionality
preservation within the feature-space, similar to prior work
[45, 58, 88].
AndroZoo and DREBIN permit feature addition and re-

moval (see Appendix E). For SLEIPNIR, only feature addition
is possible because of the processing performed by LIEF
to extract features when originally developing the dataset.
While we remain in the feature-space (like recent work
e.g., [58, 88]), the perturbations could be translated to the
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problem-space using techniques from previous work (e.g.,
[77, 82]). For example, feature addition can be achieved by
adding dead-code or by using opaque predicates [67, 77]. Fea-
ture removal — which is more complex — can be performed
by rewriting the dexcode, encrypting API calls and network
addresses (removing features but retaining functionality).
Performing Other Attacks. Prior work has evaluated a
query blinding attack against stateful defenses using tech-
niques specifically for the image recognition domain [24,
60, 108] (e.g., modifying contrast, brightness, or rotation).
These techniques cannot be applied directly to the malware
detection domain as it does not use continuous features and
functionality must be preserved. Therefore, we present an
adaptive attack instead, where we examine how MalProtect
performs against a white-box attacker with full knowledge of
how MalProtect operates, aiming to evade both MalProtect
and the underlying classifier (see Section 8 later).
We also generate adversarial examples through a trans-

ferability attack: to adversarially-train models as a defender;
and, to evaluate defenses further under different system con-
ditions (see Section 9 later). For this, we construct a set of
vanilla models using the training data (see Appendix D for
architectures). Then, we apply a range of white-box attacks
against these vanilla models (BIM [53], Decision Tree attack
[43], FGSM [33, 42], JSMA [73] and SVM attack [43]). As
these attacks are not designed for the malware detection
domain, they perturb features without considering the con-
straints of this domain resulting in continuous values in
the feature vector. Therefore, we apply a procedure to pre-
serve the functionality of the original malware sample in the
feature-space and discretize the generated feature vectors, as
these are core constraints in this domain. Once the attack is
conducted, each value in the feature vector is discretized (i.e.,
if the value in the feature vector is < 0.5, it is set to 0, else
it is set to 1). Then, if a feature has been modified invalidly,
it is restored to its original value (similar to the process for

query attacks) so that its malicious functionality is preserved
in the feature-space.

6 Black-box Query Attack Results
In this scenario, the attacker’s only capability is that they
have access to the predicted output of the oracle. We conduct
the black-box query attack against each non-stateful defense
as is, to establish the baseline performance of the prediction
models. We then evaluate and compare each combination
of stateful defense and prediction model, including both
MalProtect configurations.

Figure 3 shows the evasion rate of the black-box query at-
tack versus 𝑛𝑚𝑎𝑥 . Against non-stateful defenses (that is, the
prediction models as they are), the black-box query attack
can achieve a 100% evasion rate in some cases, with the av-
erage evasion rate sitting at 70+% across the datasets. These
results clearly demonstrate that the non-stateful defenses
do not provide adequate protection in this attack scenario,
despite being defenses in their own right. Out of the pre-
diction models, only veto voting limits the effectiveness of
the attack to some extent, with the attack achieving a maxi-
mum evasion rate of ≈ 50% across the datasets. Despite this,
around one in two to three queries can still achieve evasion
against this model.

Meanwhile, our stateful defense, MalProtect, significantly
decreases the attack success, with peak reductions in the eva-
sion rates for AndroZoo, SLEIPNIR, and DREBIN of 84%, 96%
and 98%, respectively. This highlights the benefits (and neces-
sity) of a stateful defense for this domain. Comparing the two
MalProtect configurations, MalProtect-LR and MalProtect-
NN exhibit comparable performance, with both configura-
tions able to detect attacks after 5, 7, and 2 queries for An-
droZoo, SLEIPNIR, and DREBIN, respectively. This level of
performance is achieved without compromising other met-
rics, such as the accuracy or false positive rate on legitimate
queries (as we show in Section 9 later).
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Figure 3. Evasion rate vs. 𝑛𝑚𝑎𝑥 of black-box query attack against non-stateful defenses (prediction models) and each combina-
tion of prediction model and stateful defense.
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Meanwhile, the other stateful defenses that we evaluate
are significantly less effective against this attack. For Andro-
Zoo, 𝐿0 offers themildest performance in terms of adversarial
robustness, while SD offers slightly improved performance,
but only marginally. In the attack’s weakest performance
against veto voting, we find that SD performs similarly to
MalProtect for AndroZoo and SLEIPNIR, but its performance
is much inferior in other cases (with other prediction models)
where MalProtect demonstrates robustness. For SLEIPNIR,
PRADA offers better performance than the prior stateful
defenses, though only marginally in most cases, while 𝐿0
and SD seem similar in their defensive robustness. Mean-
while, for DREBIN, we observe that the three prior stateful
defenses exhibit similar performance in all cases. That is,
the black-box query attack can cripple most configurations
involving prior stateful defenses, as they behave similarly
to the non-stateful defenses. Overall, the black-box query
attack can achieve a 60+% evasion rate in most cases against
prior stateful defenses, compared with a peak evasion rate
of ≈ 18% for MalProtect. MalProtect provides demonstrably
better protection against the black-box query attack.

7 Gray-box Query Attack Results
Prior work has stressed the importance of evaluating de-
fenses against stronger adversaries [19]. Therefore, we next
evaluate MalProtect’s performance against the gray-box
query attack and compare it with other stateful defenses
in that attack scenario. Under this scenario, the attacker has
access to the training data of the prediction models and has
more information about the features. The gray-box attack
strategy therefore utilizes information about the frequency
of features in benign samples to determine the order of trans-
plantation, resulting in a more effective attack. As before,
we conduct the attack against each non-stateful defense to
establish a baseline performance, and then against each com-
bination of stateful defense and prediction model.

Figure 4 shows the evasion rate of the gray-box query at-
tack against all combinations of stateful defenses and predic-
tion models, versus 𝑛𝑚𝑎𝑥 . Against the non-stateful defenses,
this stronger attack achieves significantly greater evasion
across all the datasets, with 100% evasion rate in many cases.
Perhaps the greatest difference from the black-box query
attack can be observed in the results against veto voting,
which was the least evaded non-stateful defense in Section 6.
Whereas the black-box query attack peaked at ≈ 40% against
this model (without any stateful defense), the gray-box query
attack achieves 60 + % evasion rate.
As far as protection by stateful defenses is concerned,

MalProtect performs the best. In the best case for the config-
urations, it reduces the average evasion rate across all models
from a peak of 84% to 13% for AndroZoo, 94% to 5% for SLEIP-
NIR, and 91% to 6% for DREBIN, while only taking ≈ 6, 6,
and 2 queries to detect an attack for AndroZoo, SLEIPNIR,
and DREBIN, respectively. Like the black-box query attack,
MalProtect-LR andMalProtect-NN offer similar performance,
with MalProtect-NN slightly outperforming MalProtect-LR
in some cases and vice-versa. In fact, the gray-box query at-
tack only achieves a maximum evasion rate of ≈ 20% against
MalProtect across the board.

For the other stateful defenses, we observe trends similar
to those seen in the results for the black-box query attack.
For AndroZoo, SD outperforms 𝐿0 and PRADA, with average
evasion rates of 57.5%, 46.9%, and 37.5% against 𝐿0, PRADA,
and SD, respectively. For SLEIPNIR, PRADA outperforms
𝐿0 and SD for the majority of prediction models, a trend
that was also observed in the black-box query attack results.
Here, the average evasion rates of the attack sit at 43.8%,
19.3%, and 50.3% for 𝐿0, PRADA, and SD, respectively. Al-
though PRADA offers some robustness, it underperforms
when other metrics are also considered (as we show later in
Section 9). For DREBIN, the prior stateful defenses perform
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Figure 4. Evasion rate vs.𝑛𝑚𝑎𝑥 of gray-box query attack against non-stateful defenses (predictionmodels) and each combination
of prediction model and stateful defense.
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similarly with more balanced performance. That is, they per-
form equally poorly, with the gray-box query attack able to
achieve average evasion rates of 71.3%, 62%, and 69.9% for
𝐿0, PRADA, and SD, respectively, across all configurations.
Interestingly, once again, PRADA (minimally) surpasses 𝐿0
and SD in terms of robustness, though the poor general
performance of these prior stateful defenses seen for both
black-box and gray-box results reaffirms that relying on a
single similarity or OOD detection mechanism is inadequate
for this domain. In the malware detection domain, attackers
use different techniques to generate adversarial examples
that often include replacing features rather than making
small perturbations to them that can be detected.
Further evaluating the evasion rate versus 𝑛𝑚𝑎𝑥 , 100 or

fewer queries are enough to achieve attack success in most
cases. Query attacks in domains using continuous features
(e.g., image recognition) may require substantially more
queries [22] to achieve attack success compared with do-
mains that use discrete features. This is because perturba-
tions in a discrete feature-space (e.g., 0 to 1) have a greater
effect on the final prediction, requiring fewer of them to
accomplish evasion than perturbations made per query in a
continuous feature-space (e.g., +0.01).

8 Interpretability & Adaptive Attack
Interpretability. As ML is being applied more to the cyber-
security domain, a key challenge is the interpretability of
predictions made by models [68]. As an initial step towards
addressing this in stateful defenses, MalProtect produces
interpretable decisions. By observing the scores produced
by each threat indicator, analysts can better understand how
MalProtect made a particular decision, as higher scores for an
indicator give clues about what is anomalous about queries.
In addition, the influence of each threat indicator on Mal-
Protect’s decision can be examined by analyzing the global
feature importance in MalProtect’s decision model. Recall
that each threat indicator is a feature of the decision model.
Therefore, we can assess the global feature importance using
SHAP [62], which is a widely-used framework for interpret-
ing ML predictions. Each feature of the decision model is
given an importance value by SHAP at a global level, which
produces the data observable in Figure 5.
Figure 5 shows that the indicator 4A has the greatest in-

fluence on MalProtect’s predicted output across all decision
models and datasets. This indicates that a significantly high
autoencoder loss is more likely to affect the predicted output.
The importance of the other indicators is more balanced.
The indicators based on similarity detection seem less influ-
ential, which is interesting because other stateful defenses
rely solely on similarity detection to detect attacks. In mal-
ware detection, not only do our results show that attackers
can evade stateful defenses relying solely on such schemes,
but we further show that MalProtect rightly considers those
indicators as less important.

However, a capable attacker could leverage this informa-
tion to evade MalProtect. In an adaptive attack (i.e., white-
box attack) scenario [19, 97], the attacker has complete knowl-
edge of MalProtect and, thus, knowledge of how much each
indicator contributes to the final decision. With this infor-
mation, an attacker could craft an adversarial example that
evades both MalProtect and the underlying prediction model.
We next examine how such an attack could be performed.
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Figure 5. Influence of MalProtect threat indicators.

AttackRationale. In the adaptive attack, the attacker knows
precisely howMalProtect operates, its internal workings, and
other pertinent information related to the threat indicators.
At a high level, to evade MalProtect’s detection system, ad-
versarial queries must appear as legitimate as possible and
convince the indicators that the queries are distinct yet nor-
mal. Additionally, adversarial queries must remainwithin the
distribution of legitimate queries. For example, we know that
the indicator 4A is the most influential in the final prediction,
and therefore it would be essential to ensure that the autoen-
coder loss is not abnormally high. In essence, queries must
remain as far apart from each other, while retaining their
original malicious functionality and appearing legitimate.
Importantly, of course, any generated adversarial example
must also evade the underlying prediction model; otherwise,
such an attack would be of no use. The attacker must bypass
all components of the target model to be successful [6].
Adaptive Attack Strategy. We modify the gray-box attack
strategy to produce the adaptive attack strategy (see Appen-
dix F). Firstly, we limit the number of features that can be per-
turbed in a single iteration of the attack so as not to exhaust
possible perturbations early on. This frees up perturbations
to be used in later iterations of the attack if earlier queries
cannot achieve evasion. While this may increase the query
distance and make queries appear less anomalous, other in-
dicators (e.g., indicator 4A) may still be able to trigger attack
detection. To deal with this, the adaptive attack strategy re-
moves a proportion (𝑝) of features at each iteration. This
means that queries will be more distant, with fewer shared
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and enabled features, while conforming to the distribution
of legitimate queries and the training data. For example, a
combination of features that may cause an increase in the
autoencoder loss (such that it appears anomalous) may be
removed. Only the AndroZoo and DREBIN datasets support
the removal of features while preserving functionality within
the feature-space. Therefore, the adaptive attack strategy can
only be applied to these datasets.
Results. Figure 6 shows the evasion rate of the adaptive
attack against the stateful defenses (averaged across the max-
imum number of queries permitted, up to 500) versus the
percentage of features removed (𝑝). Successful adversarial ex-
amples evade each stateful defense as well as the underlying
prediction model, which is NN-AT.
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Figure 6. Average evasion rate vs. 𝑝 for adaptive attack. The
average is across the maximum number of queries permitted.

For both datasets, the adaptive attack fails to achieve signif-
icant increases in the evasion rate against either MalProtect
configuration. In fact, in some cases, the average evasion rate
decreases as 𝑝 increases. This is likely because the (benign)
features selected to cross the decision boundary are in fact
removed. The adaptive attack causes other stateful defenses
to exhibit similar performance to the gray-box query attack,
with an average evasion rate of 72.9%, 61.9%, and 67.7% for 𝐿0,
PRADA, and SD, respectively, with a consistent evasion rate
across different values of 𝑝 . This is expected, as the adaptive
attack is specifically designed to target MalProtect and not
the other stateful defenses.

9 Beyond Adversarial Robustness
We also evaluate the stateful defenses with metrics beyond
the evasion rate. This is imperative, as the original task of
classifying benign and malicious queries must be done prop-
erly too. For example, accuracy is important across all do-
mains. Additionally, particularly in malware detection, the
FPR must remain low [45, 59, 93, 105] lest a system be de-
ployed that frustratingly flags legitimate queries as malicious,
affecting the quality of service.
Procedure.We evaluate the stateful defenses under different
system conditions by querying them with varying degrees of
adversity. For this, we generate adversarial examples through
a transferability attack using substitute models trained on
the same training data as the target models. We construct
four vanilla models (see Appendix D for architectures) and
apply a range of attacks against these models (see Section 5)
to generate 1000+ adversarial examples with the aim of hav-
ing them transfer to the target models. Each stateful defense

is then evaluated using NN-AT as the prediction model. For
this, each stateful defense is queried 1000+ times with val-
ues of 0.1 ≤ 𝑘 ≤ 0.9, with 𝑘 representing the adversarial
intensity. For example, 𝑘 = 0.1 means that 10% of queries are
adversarial examples, while the remainder is an equal num-
ber of benign and non-adversarial malware samples from
our test set. We avoid the instances where there are no ad-
versarial queries (𝑘 = 0) and when all queries are adversarial
(𝑘 = 1) as it is unlikely that a defense is deployed in such en-
vironments. Where necessary, the query history is initialized
with randomly selected samples from the training data.
Results. Figure 7 shows the performance of each stateful
defense across different metrics versus 𝑘 . For AndroZoo and
SLEIPNIR, most stateful defenses remain largely unaffected
as 𝑘 increases. In particular, both MalProtect configurations
exhibit stable performance across both of these datasets
across all metrics. Meanwhile, other stateful defenses such as
𝐿0, PRADA, and SD offer relatively consistent accuracy for
these datasets as 𝑘 increases. This is likely because the adver-
sarial queries are less effective as they are generated through
transferability attacks. Recall that these attacks are designed
for other domains and that perturbations may be reversed if
features are modified in a manner that affects functionality,
thereby limiting attack success. For DREBIN, we observe the
general decline of the non-stateful NN-AT model as well as
all stateful defenses besides MalProtect, whose accuracy does
not dip as the adversarial intensity increases. 𝐿0, PRADA,
and SD perform worse, only exhibiting their peak accuracy
at the lowest value of 𝑘 . These results show that MalProtect
exhibits robustness towards transferability attacks, as it can
offer 98% accuracy as 𝑘 reaches 0.9, where the majority of
queries are adversarial examples.
MalProtect’s strong performance is also reflected in the

F1 and AUC metrics. As 𝑘 increases, its performance tends
to remain stable across the datasets similar to the accuracy.
Conversely, other stateful defenses, such as PRADA and SD,
suffer a decline in their performance with similar trends to
the accuracy visible across the datasets.

Finally, and in addition to the othermetrics, in themalware
detection domain, a low false positive rate (FPR) is essen-
tial to ensure a reliable service for users [25, 45, 59, 93, 105].
As we expect and can confirm, stateful defenses exhibit a
higher FPR than non-stateful models due to the sensitivity
of their detection mechanisms, which leads them to incor-
rectly flag some legitimate queries as adversarial. MalProtect
generally offers a low FPR, as it uses several indicators to
predict an attack. Across the datasets, 𝐿0 is the only defense
that offers comparable performance to MalProtect, likely as
it does not have an overly-sensitive detection mechanism
(though as we have seen, it does not work well at defending
against query attacks in this domain). For AndroZoo, the
FPR of both MalProtect configurations is comparable to the
non-stateful NN-AT model, with only 9% for both MalPro-
tect configurations (versus 5% for the non-stateful defense).
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Figure 7. Accuracy, FPR, F1 & AUC vs. 𝑘 for each stateful
defense.

Regarding other stateful defenses, PRADA exhibits a signifi-
cantly high FPR for SLEIPNIR, similar to AndroZoo. This is
closely resembled by SD, with its high FPR for the other two
datasets. For DREBIN, PRADA and SD exhibit an average
FPR of 40+% across all values of 𝑘 — this is a trend similar
to the AndroZoo dataset. Considering different standard ML
metrics, MalProtect clearly offers more reliable performance
under an altogether different attack scenario.

10 Overheads of MalProtect
We have shown MalProtect’s ability to defend prediction
models against adversarial query attacks. However, assessing
the storage and time costs of deploying MalProtect is also
crucial. MalProtect’s detection capacity and performance
are proportional to the defender’s available resources; with
additional resources, MalProtect can store and analyze more
queries in 𝑄 rapidly and precisely to detect attacks.
Storage. The storage cost scales linearly with the size of𝑄 . In
our experiments, the size of𝑄 is capped at 10,000, which only
consumes ≈ 0.08MB storage for all the datasets. MalProtect’s
storage costs are therefore negligible considering modern
resources.
PredictionTime.There is latency associatedwith analyzing
the query history and returning the prediction to the user.
For MalProtect, the worst-case prediction time — which is
when it must compare a query with all of𝑄 — scales linearly
with the size of the query history. In our experiments where
|𝑄 | is capped at 10,000, the worst-case prediction time sits
at ≈ 0.4 seconds for AndroZoo and SLEIPNIR, and ≈ 0.6
seconds for DREBIN. For MalProtect-LR and MalProtect-NN,

the analysis stage is identical, while obtaining the prediction
from the decision model is near-instant, which produces the
same overall cost. While other stateful defenses such as 𝐿0,
PRADA, and SD sometimes have lower worst-case prediction
times (≈ 0.03-0.6 seconds across the datasets), MalProtect
takes more time to perform an in-depth analysis of the query
history, which provides more protection against attacks. As
we have shown, other stateful defenses are more susceptible
to attacks when applied to this domain.
Optimization. MalProtect can be optimized with GPUs.
We find that running MalProtect on an NVIDIA A100 GPU
reduces the worst-case prediction time to≈ 0.21-0.41 seconds
across the datasets when |𝑄 | is capped at 10,000 queries.

11 Conclusion
In this paper, we presented MalProtect, which is the first
stateful defense for adversarial query attacks in the ML-
based malware detection domain. As we have shown, ML
prediction models and defenses exhibit significant vulnera-
bility to query attacks in this domain. Prior stateful defenses
that have been applied to other domains provide little protec-
tion here either. Meanwhile, our defense, MalProtect, does
not rely solely on similarity or out-of-distribution detection,
as these prior defenses do. Instead, several threat indicators
and a decision model are used to detect attacks more effec-
tively. Our evaluation has shown that MalProtect performs
well against attacks under various scenarios and also offers
more reliable predictions for non-adversarial queries than
prior stateful defenses. Furthermore, MalProtect displays
resilience even against adaptive attackers.
As future work, we aim to explore how additional indi-

cators could be added to increase protection, such as cyber-
threat intelligence [90, 109]. Moreover, there is an open re-
search direction regarding concept drift. This relates to the
constant evolution of malware, which makes it difficult to
detect unseen behavior [18, 39, 50], leading to unsustain-
able models. Prior work has suggested retraining a model
regularly [49, 64]. In the case of MalProtect, the defender
may need to regularly evaluate the indicators. One potential
way to do this would be to couple MalProtect with a detec-
tion framework for detecting when such modifications are
necessary [50].
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A MalProtect
Model Parameters
Logistic Regression
(MalProtect-LR) No configurable parameters.

Neural Network
(MalProtect-NN)

4 fully-connected layers (128 (Relu), 64 (Relu),
32 (Relu), 2 (Softmax))

Table 1. Decision models for MalProtect configurations.

B Other Stateful Defenses
𝐿0 defense. The 𝐿0 defense measures the similarity between
feature vectors using the 𝐿0 distance. This is akin to similarity
detection schemes that use 𝐿𝑝 norms in other domains (e.g.,
[60]). As binary feature vectors are used in the malware
detection domain, 𝐿0 is the most appropriate measure of
distance between two such feature vectors,𝑋 and𝑋 ′ [20, 78].
It measures the number of instances such that 𝑋𝑖 ≠ 𝑋 ′𝑖 . For
the 𝐿0 defense, an attack is detected if there are queries with
an 𝐿0 distance of less than 10 as lower thresholds may easily
miss attacks [24, 51, 60].
PRADA [51]. For PRADA, we use 𝛿 = 0.9 for the threshold,
as per the original paper [51].
Stateful Detection (SD) [24]. For SD, the threshold for de-
tecting an attack is derived by calculating the k-neighbor dis-
tance for the 0.1 percentile of the training set. At prediction-
time, if the mean distance of the k-nearest queries falls below
the calculated threshold, an attack is detected. For this, we
use 𝑘 = 50 (as per the original paper). The calculated thresh-
olds for detection are as follows:
AndroZoo SLEIPNIR DREBIN
94.64749019607844 44.350758426966294 34.37145577151924

Table 2. Thresholds for detection for SD as per calculations
based on original paper.

C Prediction Models
We use six non-stateful defenses as the prediction models.
These are evaluated without any stateful protection and then
evaluated in combination with each stateful defense.

Defense Configuration/parameters/setup

Defensive distillation [75] Neural Network (128 (Relu), 64 (Relu), 32 (Relu),
2 (Softmax) with defensive distillation applied.

Ensemble adversarial training [80, 98]
(NN-AT)

Neural Network (128 (Relu), 64 (Relu), 32 (Relu),
2 (Softmax)). Adversarially-trained up to 25% size of
training data.

Morphence [5] 𝑛 = 4, 𝑝 = 3, 𝑄𝑚𝑎𝑥 = 1000.

StratDef [80] Variety-GT using same models as original paper.
Assumed strong attacker and 𝛼 = 1.

Voting (Majority & Veto) Using same models as StratDef.

Table 3. Architectures of prediction models.

D Vanilla Models
The following vanilla models are used in some instances (e.g.,
to generate adversarial examples, see Section 5).

Model Parameters
Decision Tree max_depth=5, min_samples_leaf=1

Neural Network 4 fully-connected layers (128 (Relu),
64 (Relu), 32 (Relu), 2 (Softmax))

Random Forest max_depth=100
Support Vector Machine LinearSVC with probability enabled

Table 4. Architectures of vanilla models.

E Permitted Perturbations for AndroZoo
and DREBIN

The AndroZoo [3] and DREBIN [8] datasets are based on the
Android platform. Both datasets can be divided into eight
feature families comprised of extracted static features such
as permissions, API calls, hardware requests, and URL re-
quests. Based on their family, features may be addable or
removable during attacks to traverse the decision bound-
ary, according to industry documentation and prior work
(e.g., [1, 2, 54, 57, 58, 77, 80]). However, it is imperative to
preserve malicious functionality in the feature-space as a
core constraint in this domain. For example, attacks cannot
remove features from the manifest file nor intent filter, and
component names must be consistently named. Therefore,
Table 5 summarizes the permitted perturbations for each
feature family for these datasets. This is used to determine
whether the perturbations performed by an attack are valid.
For example, if a feature belonging to the S1 family is re-
moved by an attack, then its original value is restored as it
is not permitted to be removed (see Section 5).

Feature families Addition Removal

manifest

S1 Hardware ✓ ✗
S2 Requested permissions ✓ ✗
S3 Application components ✓ ✓
S4 Intents ✓ ✗

dexcode

S5 Restricted API Calls ✓ ✓
S6 Used permission ✗ ✗
S7 Suspicious API calls ✓ ✓
S8 Network addresses ✓ ✓

Table 5. Permitted perturbations for Android datasets. These
are determined by consulting industry documentation and
prior work [1, 2, 54, 57, 58, 77, 80].
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F Query Attack Strategies
We modify attack strategies from prior work on adversar-
ial attacks in malware detection [82]. These are based on a
software transplantation approach where an attacker makes
perturbations based on benign samples. We modify prior
attack strategies by transplanting multiple features per itera-
tion (rather than one perturbation per iteration). The differ-
ences between the black-box and gray-box strategies lie in
how perturbations are applied. The black-box attack selects
the features to perturb in a randomized manner, while the
gray-box attack perturbs features based on their frequency
in benign samples in a heuristically-driven approach.

Algorithm 1 Black-box query attack: for oracle 𝑂 , malware
sample 𝑋 , set of (randomly-ordered) benign features 𝐹 , max-
imum permitted queries 𝑛𝑚𝑎𝑥 .

Input: 𝑂 , 𝑋 , 𝐹 , 𝑛𝑚𝑎𝑥

1: 𝑋 ′ ← 𝑋 , 𝑛 ← 0
2: while 𝑂 (𝑋 ′) = 1 & 𝑛 < 𝑛𝑚𝑎𝑥 & 𝑛 < 𝐹 .𝑙𝑒𝑛𝑔𝑡ℎ do
3: 𝑋 ′ ← 𝐴𝑑𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒 (𝑋 ′, 𝐹 [𝑛])
4: 𝑟 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑡𝑒𝑔𝑒𝑟 (0, 𝐿𝑒𝑛𝑔𝑡ℎ(𝐹 ))
5: 𝐹𝑟 ← 𝐶ℎ𝑜𝑜𝑠𝑒𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝑟, 𝐹 )
6: 𝑋 ′ ← 𝐴𝑑𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝑋 ′, 𝐹𝑟 )
7: 𝑋 ′ ← 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛𝑠 (𝑋,𝑋 ′)
8: 𝑛 ← 𝑛 + 1
9: if 𝑂 (𝑋 ′) = 0 then return 𝑆𝑢𝑐𝑐𝑒𝑠𝑠

10: return 𝐹𝑎𝑖𝑙𝑢𝑟𝑒

For the adaptive attack against MalProtect, the number of
features that is added in a single perturbation is capped, and
from the removable features of the query, 𝑝% of features are
removed. This is to make queries as distinct from each other
as possible while remaining within the general distribution
of other queries.

Algorithm 2 Gray-box query attack: for oracle 𝑂 , malware
sample 𝑋 , vector of sorted benign features ®𝑠 , maximum per-
mitted queries 𝑛𝑚𝑎𝑥 .

Input: 𝑂 , 𝑋 , ®𝑠 , 𝑛𝑚𝑎𝑥

1: 𝑋 ′ ← 𝑋 , 𝑛 ← 0
2: while 𝑂 (𝑋 ′) = 1 & 𝑛 < 𝑛𝑚𝑎𝑥 & 𝑛 < ®𝑠 .𝑙𝑒𝑛𝑔𝑡ℎ do
3: 𝑋 ′ ← 𝐴𝑑𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒 (𝑋 ′, ®𝑠 [𝑛])
4: 𝑟 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑡𝑒𝑔𝑒𝑟 (0, 𝐿𝑒𝑛𝑔𝑡ℎ(®𝑠))
5: 𝐹𝑟 ← 𝐶ℎ𝑜𝑜𝑠𝑒𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝑟, ®𝑠)
6: 𝑋 ′ ← 𝐴𝑑𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝑋 ′, 𝐹𝑟 )
7: 𝑋 ′ ← 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛𝑠 (𝑋,𝑋 ′)
8: 𝑛 ← 𝑛 + 1
9: if 𝑂 (𝑋 ′) = 0 then return 𝑆𝑢𝑐𝑐𝑒𝑠𝑠

10: return 𝐹𝑎𝑖𝑙𝑢𝑟𝑒

Algorithm 3 Adaptive attack: for oracle𝑂 , malware sample
𝑋 , vector of sorted benign features ®𝑠 , maximum permitted
queries 𝑛𝑚𝑎𝑥 , 𝑝 percentage of features to remove,𝑚 maxi-
mum features to add in each iteration.

Input: 𝑂 , 𝑋 , ®𝑠 , 𝑛𝑚𝑎𝑥 ,𝑚
1: 𝑋 ′ ← 𝑋 , 𝑛 ← 0
2: while 𝑂 (𝑋 ′) = 1 & 𝑛 < 𝑛𝑚𝑎𝑥 & 𝑛 < ®𝑠 .𝑙𝑒𝑛𝑔𝑡ℎ do
3: 𝑋 ′ ← 𝐴𝑑𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒 (𝑋 ′, ®𝑠 [𝑛])
4: 𝑟 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑡𝑒𝑔𝑒𝑟 (0,𝑚)
5: 𝐹𝑟 ← 𝐶ℎ𝑜𝑜𝑠𝑒𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝑟, ®𝑠)
6: 𝑋 ′ ← 𝐴𝑑𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝑋 ′, 𝐹𝑟 )
7: 𝑋 ′ ← 𝑅𝑒𝑚𝑜𝑣𝑒𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝑋 ′, 𝑝)
8: 𝑋 ′ ← 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛𝑠 (𝑋,𝑋 ′)
9: 𝑛 ← 𝑛 + 1
10: if 𝑂 (𝑋 ′) = 0 then return 𝑆𝑢𝑐𝑐𝑒𝑠𝑠

11: return 𝐹𝑎𝑖𝑙𝑢𝑟𝑒

G Evaluating Other Query Attacks
We also test the Boundary [16], HopSkipJump [22], and ZOO
[23] query attacks. We demonstrate their inability to gen-
erate adversarial examples in this domain, as these attacks
are designed for other domains and do not consider the
constraints of the malware detection domain (functionality
preservation and discretization of features). We use each
attack to generate adversarial examples against the NN-AT
model. For this, once the feature vector of a malware sample
has been perturbed, we discretize the feature vectors and
evaluate whether the perturbations are permitted for each
dataset. Any invalid perturbations are reversed.
Figure 8 shows that these attacks are unable to achieve

evasion at all. It is clear that the perturbations used to cross
the decision boundary are reversed. That is, invalid pertur-
bations are consistently made that must be discretized and
reversed to ensure functionality preservation. In this same
figure, we also show that our black-box query attack strategy
achieves 80 + % evasion rate across the datasets.
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(a) AndroZoo
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(b) SLEIPNIR
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Figure 8. Evasion rate of additional query attacks against
NN-AT model vs. 𝑛𝑚𝑎𝑥 .
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