
PackGenome: Automatically Generating Robust YARA Rules for
Accurate Malware Packer Detection

Anonymous Author(s)
ABSTRACT
Binary packing, a widely-used program obfuscation style, com-
presses or encrypts the original program and then recovers it at
runtime. Packed malware samples are pervasive—they conceal ar-
resting code features as unintelligible data to evade detection. To
rapidly respond to large-scale packed malware, security analysts
search specific binary patterns to identify corresponding packers.
The quality of such packer patterns or signatures is vital to malware
dissection. However, existing packer signature rules severely rely
on human analysts’ experience. In addition to expensive manual
efforts, these human-written rules (e.g., YARA) also suffer from
high false positives: as they are designed to search the pattern of
bytes rather than instructions, they are very likely to mismatch
with unexpected instructions.

In this paper, we look into the weakness of existing packer de-
tection signatures and propose a novel automatic YARA rule gen-
eration technique, called PackGenome. Inspired by the biological
concept of species-specific genes, we observe that packer-specific
genes can help determine whether a program is packed. Our frame-
work generates new YARA rules from packer-specific genes, which
are extracted from the unpacking routines reused in the same-
packer protected programs. To reduce false positives, we propose
a byte selection strategy to systematically evaluate the mismatch
possibility of bytes. We compare PackGenome with public-available
packer signature collections and a state-of-the-art automatic rule
generation tool. Our large-scale experiments with more than 640K
samples demonstrate that PackGenome can deliver robust YARA
rules to detect Windows and Linux packers, including emerging
low-entropy packers. PackGenome outperforms existing work in all
cases with zero false negatives, low false positives, and a negligible
scanning overhead increase.

1 INTRODUCTION
Binary packing is recognized as one of the most popular software
protection techniques [1]. It was originally designed to reduce the
size of executable programs. Binary packers compress (or encrypt)
the code and other necessary assets of the input program to packed
data. It integrates an unpacking routine and packed data into the
packed version. The unpacking routine takes charge of recovering
and executing the original code at runtime. As a result, the orig-
inal program’s behaviors are hidden from static analysis. When
combined with other code obfuscation and anti-analysis methods,
packed programs can effectively impede reverse engineering at-
tempts [2, 3]. Therefore, binary packing is not only favored by
software developers but also has long been abused by malware
authors. Recent studies [4–6] show that nearly 50% of packed pro-
grams (collected in the wild within the last five years) are benign,
and 75% of malware samples are packed.

Intuitively, security analysts can dynamically monitor a packed
program’s execution to accurately discover the concealed behaviors.

Unfortunately, the various evasion techniques adopted by advanced
packers are significantly hindering dynamic analysis [7]. Security
analysts have to adopt highly customized dynamic analysis (e.g.,
stealthy instrumentation [8] or hardware-assisted tracing [9]) as
countermeasures. When processing large-scale programs, the cost
of customized environments will become unacceptable [6]. For ex-
ample, VirusTotal, the top malware online scan service, processes
more than 868K new files daily [10]. Therefore, security analysts
typically rely on efficient static analysis to prioritize packed pro-
grams that are worthy of expensive dynamic analysis [11].

Static packer detection has evolved into several variations. One
heuristic method is to measure entropy: the compressed or en-
crypted data typically reveal higher entropy than the compiled
code. Many research papers [4, 12–15] and industrial tools [16]
regard the high entropy of sections as a sign of packed programs.
However, Mantovani et al. [17] find that more than 30% of their
50K Windows malware datasets are low-entropy packed samples.
These packed samples adopt multiple data encoding tricks to evade
entropy-based detection. Another direction identifies packed pro-
grams based on the features extracted from executable binaries,
such as PE header metadata, disassembly instructions, or the labels
provided by VirusTotal [18–22]. The security community mainly
uses these arresting static features to create signature rules or train
machine learning models. However, Aghakhani et al. [6] point out
that themachine-learning classifiers are not robust enough to detect
packed malware variants in the wild.

As the most popular technique adopted by the security commu-
nity, signature-based packer detection matches packers with prede-
fined textual or binary patterns. The representative tool, YARA [23],
has become the industry de facto standard to express malware char-
acteristics. In academia, we surveyed the papers published in 12
major cyber security conference venues (e.g., IEEE S&P, USENIX
Security, ACM CCS, and NDSS) over the past 16 years (detailed
in Appendix A). There are 26 papers (12 of them are published in
the top four venues) that rely on signature-based tools to identify
packed programs in their experiments. According to whether di-
rectly using the signature-based tools in their experiments, these
papers can be divided into two categories: (i) 24 papers directly use
signature-based tools. For example, Ugarte-Pedrero et al.’s SoK pa-
per [4] uses PEiD [24], Sigbuster, and F-Prot to classify off-the-shelf
and custom packers. (ii) Two papers indirectly use signature-based
tools. Downing et al. [25] and Park et al. [26] use unipacker [27]
to unpack the samples of their datasets, while unipacker relies on
YARA rules to detect packed programs.

The quality of the rules that describe packer features is the key to
the effectiveness of signature-based detection. As research papers
widely use signature-based detection tools to prepare ground-truth
datasets [4], problematic rules might unintentionally pollute the
dataset and lead to biased results. Unfortunately, the existing packer
signature rules are mostly written and maintained by human ana-
lysts. After examining 10,249 publicly-available packer detection

1

Anonymous submission #396 to ACM CCS 2023

rules (detailed in Sec. 7), we find that the existing human-written
rules are confronted with the following three problems.
P1: The cost of manually writing and maintaining rules is
becoming unaffordable. To develop signature rules, security an-
alysts have to put great effort into analyzing packed programs
and summarizing common features. A recent study [28] shows
that experienced analysts spend several hours to weeks on reverse
engineering programs. When handling complex packers such as
Themida [29], even skilled analysts need up to six months on under-
standing programs and developing unpackers [30]. Meanwhile, the
number of packers grows faster than the rule development process.
In addition to over 150 different off-the-shelf packers with multiple
versions [31, 32], there are also a great number of custom packers,
which are preferred by malware authors [4, 30]. Considering the
evolution of packers, security analysts also have to periodically
track packers’ new updates. Furthermore, 99.88% of packer detec-
tion rules are created from x86 instructions. To support x64 packed
program detection, security analysts have to repeat the tedious rule
development process.
P2: The development of packer rules severely relies on hu-
man analysts’ experience. Guided by reverse engineering experi-
ence, malware researchers manually extract the common patterns
of packed programs as rules. We observe that nearly 85% of rules
only describe the Portable Executable (PE) entry point’s instruc-
tions or section names. However, these features make the rules
vulnerable to adversary packers. For example, APT41 camouflages
VMProtect-packed programs by changing the section name from
“.vmp” to “.UPX” [33]. Furthermore, the choice of the rule lengths
and special constructions (e.g., wildcards) may bring more uncer-
tainty to the rule matching. For example, a YARA rule with eight
wildcards causes VirusTotal to mistakenly recognize the 7z.exe file
as the Armadillo-packed program [34] (detailed in Appendix B).
P3: Packer rules reveal high false positives caused by mis-
matching with unexpected instructions. Human analysts de-
velop rules according to the bytes of expected instructions. How-
ever, signature-based detectors are based on the pattern matching,
which operates on byte strings, regardless of instruction formats.
Note that the byte length of an x86/x64 instruction varies from
1 to 15 [35]. As a result, human-written rules are very likely to
mistakenly match parts of an irrelevant instruction, leading to high
false positives (detailed in Sec. 2.3).

In this paper, we aim to mitigate the above problems by propos-
ing PackGenome, an automatic YARA rule generation technique
to advance packer detection. PackGenome is inspired by a biolog-
ical fact that species-specific genes make humans different from
chimpanzees [36]. PackGenome creates rules from packer-specific
genes, which make the packed programs distinguished from the
non-packed programs. We extract packer-specific genes from the
unpacking routine instructions, because the unpacking routine is
reused in the same-packer protected programs and does not exist
in non-packed programs.

In particular, we first collect the unpacking routine instructions
from packed binaries using a hybrid static-dynamic analysis. Since
signature-based tools only scan programs statically, we dynami-
cally extract the high-frequency instructions that are also visible

to static analysis. Then, we identify packer-specific genes by cal-
culating statistical similarity [37] of unpacking routines reused in
the same-packer protected programs. At last, we propose a byte
selection strategy to generate YARA rules. Our approach evaluates
the mismatch probability of the generated rules when matching
with unexpected instructions. This mismatch probability guides us
to select appropriate bytes as rules.

We have conducted a set of experiments to evaluate the efficacy
of PackGenome. We first apply PackGenome to automatically gen-
erate new YARA rules for popular off-the-shelf and custom packers.
Our evaluation of over 640K samples shows that our generated rules
outperform existing work, including public-available YARA rules,
the YARA rules generated by the state-of-the-art automatic rule
generation tool AutoYara [21], and sophisticated JavaScript-like
rules from Detect it Easy [16]. Compared with these representa-
tive tools, our approach exhibits zero false negatives, much lower
false positives, and a negligible scanning overhead increase. We
also evaluate the scalability of PackGenome in real-world scenar-
ios. The results show that PackGenome-generated rules are robust
to recognize x86/x64 Windows and Linux packed programs, even
the custom packers such as low-entropy versions modified from
standard packers.
Contributions Our key contribution is to free security profes-
sionals from the burden of manually piecing together the tedious
steps of packer signature generation. In fact, malware researchers
utilizing PackGenome will enjoy a simpler and more streamlined
YARA rules development process than ever before. In summary,
this paper makes the following technical contributions:
• Our key observation is that packer-specific genes, extracted

from unpacking routines, are ideal candidates as packer signif-
icant features. We develop a hybrid static-dynamic extraction
method to obtain these genes from the same-packer protected
programs.

• We propose an automatic YARA rules generation technique
for packer detection. The generated rules are robust to detect
off-the-shelf packers, even the custom versions.

• We design a novel byte selection strategy, which evaluates the
mismatch probability of the given byte rules. It can guide both
automatic rule generation tools and human analysts to reduce
false positives significantly.

Open Source We release PackGenome’s source code and generated
YARA rules to facilitate reproduction and reuse, as all found at (URL
omitted for double-blind reviewing).

2 BACKGROUND AND MOTIVATIONS
In this section, we provide the background information needed
to understand our work’s motivation. We first introduce binary
packing and signature-based packer detection techniques. Then,
we discuss the limitations of existing human-written rules and
the challenges of developing robust packer detection rules, which
motivate us to propose PackGenome.

2.1 Binary Packing
As shown in Fig. 1, the original program is statically rewritten by a
packer and then gets self-unpacked at runtime. The packer treats
instructions and other resources (e.g., “.data” section) of the input

2

Anonymous submission #396 to ACM CCS 2023

Original Program

.text

Original
Header

.data

.rdata
…

Packed Program
Single

Unpacking Layer

.rdata
…

Modified
Header

Unpacking
Routines

.text

.dataPacked

Multiple
Unpacking Layers

Unpacking
Layer 2

Generated at
Runtime

...

Unpacking
Layer n

...
Packing Executing

Modified
Header

Unpacking
Routines

.text

.data

.rdata
…

Modified
Header

Unpacking
Layer 1

.text

.data

.rdata
…

Unpacking

Program
Entrypoint

Figure 1: An illustration of the unpacking process.

1 rule UPX {
2 strings:
3 $a = "UPX"
4 $b = { 60 E8 00 00 00 00 58 83 E8 3D }
5 $c = { EB ?? ?? ?? ?? ?? 8A 06 46 88 07 47 01 DB 75 07

8B 1E 83 EE FC 11 DB }
6 $d = { 60 E8 [4] 58 83 E8 3D 50 8D B8 [4] (57|87) 8D

B0}
7 condition:
8 $a and ($b at pe.entry_point or $d at pe.entry_point

) and $c
9 }

Figure 2: A YARA rule to detect UPX-packed programs.

program as data. It compresses or encrypts these data and rewrites
the input program. Meanwhile, the packers can modify (or remove)
any parts of the original program that are not required for normal
execution. For example, the UPX-packed programs use the section
name “.UPX” instead of “.text”. The generated packed program
typically contains the packed data and an unpacking routine.

The unpacking routine takes care of recovering the original
code and driving the packed program to execute (i.e., the “written-
then-executed” procedure [38]). To avoid breaking the functionality
of the original program, the unpacking routine places unpacked
original instructions and related resources at the original virtual
addresses instead of arbitrary memory areas [39]. The reason is
that the compiler-generated instructions access memory contents
via specific address offsets, but recognizing and relocating memory
addresses is still unsolved for static binary rewriting [40]. Further-
more, to complicate reverse engineering, the unpacking process
may contain layers of “written-then-executed” code [2, 4] (1 in
Fig. 1). However, no matter how many unpacking layers exist, each
packed program needs the first layer of the unpacking routine to re-
lease other layers, which means that part of the unpacking routine
is always visible to static analysis (2 in Fig. 1).

The core of the unpacking routine is the compression or decryp-
tion algorithm, which is typically reused from mature third-party
libraries [41, 42]. For example, packed malware widely adopts the
aPLib compression library [43]. Due to the performance concern,
we observe that unpacking routines are usually protected by light-
weight (or even no) obfuscation (detailed in Sec. 7.3).

2.2 Signature-based Packer Detection
Signature-based packer detectors search the predefined textual or

binary patterns using their own pattern matching grammars. Here-
inafter, we focus on YARA [23], which is the most widely used tool
for specifying malware signatures and performing searches. Each
YARA rule consists of two essential parts: strings and condition.

Table 1: Categorized public-available YARA rules for packer
detection after removing duplicates. “Packers” means sup-
ported packers. “Meta” means the rules created from the PE
header information [44] and text strings. “SC Bytes” means
the rules use special constructions such as wild cards.

Sources #Packers Search Scope Search Content #Total
Address-Based Full-Binary Meta Bytes SC Bytes

[45–50] 492 9,582 667 31 6,672 3,549 10,249

A YARA rule to detect UPX-packed programs is shown in Fig. 2.
The contents below the strings keywords are the expressions to
be matched in binary code. YARA supports four types of strings,
including text strings ($a), text strings with regular expression,
hexadecimal strings ($b), and hexadecimal strings with special
constructions (i.e., wildcard (?? in $c), jumps ([4] in $d), and al-
ternatives ((57|87) in $d)).

To produce appropriate rules of the strings, security analysts
need to examine enormous packed programs and find the com-
mon salient expressions. They typically extract byte features of
relevant instructions rather than textual features to develop packer
detection rules, because binary packing can easily conceal or cam-
ouflage text strings of the packed program. As signature-based
detection directly scans binary code instead of disassembly instruc-
tions, security analysts write hexadecimal rules based on the bytes
of expected instructions. The contents of condition define two
scopes to perform pattern matching: address-based vs. full-binary
matching.
Address-Based Matching In this scenario, signature-based detec-
tors only search given rules at specific addresses. For example, the
rules $b and $d in Fig. 2 will only be searched at the entry point
of PE files. We notice that more than 90% of packer detection rules
only perform searches at specific addresses. However, the packer
developers and malware authors can easily change the instructions
at the entry point to bypass the address-based matching.
Full-Binary Matching To increase the robustness of rules, ana-
lysts can let signature-based detectors search through the entire
binary (e.g., rule $a and $c in Fig. 2). However, signature-based
detectors match the format of bytes regardless of the instruction
encoding. Problematic whole-binary matching rules will introduce
high false positives.

2.3 Challenges of Generating Packer Detection
Rules

Developing high-quality packer detection rules is a long-standing
problem.We collect 10,249 public-available YARA rules after remov-
ing duplicated ones, and we categorize them in Table 1. A notable
trend is that, as the number of packers continues to grow, the cost
of manually developing and maintaining YARA rules is becoming
unaffordable. Generating robust packer detection rules is faced with
the following two challenges.

First, the guidelines to generate packer detection rules are miss-
ing. Human analysts rely on their experience to select features
and develop signature rules. Table 1 presents that 93.3% of human-
written rules only consider the bytes of packed programs’ entry
point, while these rules can be easily bypassed via modifying the

3

Anonymous submission #396 to ACM CCS 2023

Matched Bytes

Normal Instructions

...
03 D3 add edx, ebx
EB .. jmp 0x475BD0

(a) Correctly Matched

...
0F 22 03 mov cr0, ebx
D3 EB shr ebx, cl

(b) Misplace Matching

Normal Instructions

Mismatched Bytes

$rule={ 03 D3 EB }

03 D3 add edx, ebx
EB .. jmp 0x41e258

Single Yara Hexadecimal String Rule

Obsidium’s unpacking routine
with control flow obfuscation

4 Bytes Single Instruction
Jump Instruction

2 Bytes Single Instruction
Jump Instruction

...

...

Splitted Basic Blocks

Figure 3: Comparison of different results matched by the YARA hexadecimal string rule: $rule={03 D3 EB}.
entry point instructions. An alternative way is to expand the search
scopes to the whole binary, but the hexadecimal string rules with
few bytes will result in high false positives. To counteract false
positives, security analysts tend to create rules with long-length
bytes—80% of rules in Table 1 are longer than 25 bytes. These
rules contain multiple control transfer instructions such as jmp and
call1. Unfortunately, they can still be easily thwarted by control-
flow obfuscations such as basic block splitting.

The second obstacle is that packer rules mismatching with irrele-
vant instructions occurred often. The reason is that signature-based
detection matches bytes without considering the format of instruc-
tions. This design shortcoming would lead to misplace matching, in
which the matched bytes belong to parts of unexpected instructions.
Fig. 3(b) shows an example of a hexadecimal string rule mismatch-
ing with parts of two sequential instructions; the matched instruc-
tions have different formats and semantics from the expected ones.
Intuitively, the signature-based detection can support instruction
matching based on static disassembly results, but performing disas-
sembly for every program will incur extra overhead. As a result, the
accumulated slowdowns of scanning large-scale packed programs
will become unacceptable.

3 OVERVIEW
Our research aims to solve the challenge discussed in Sec. 2.3 and
make packer detection rules generation less burdensome. In par-
ticular, we develop a new packer analysis framework to extract
packer-specific genes and automatically generate YARA rules. The
insight behind our approach is that the reused unpacking routine
instructions are ideal candidates for packer-specific genes, because
they recur in the same-packer protected programs. Furthermore,
we propose a novel byte selection strategy to reduce the mismatch
probability of generated YARA rules. PackGenome is effective in
processing both Windows and Linux packers on x86/x64 platforms.
As shown in Fig. 4, the workflow of PackGenome involves the
following four steps.
1 Packed Program Preprocessing This step prepares multiple
same-packer protected programs for packer-specific gene extrac-
tion. By proactively interacting with packer tools, we traverse ob-
fuscation configurations of packers to synthesize diversified packed
programs with different unpacking routines. Then, we statically
extract the section information from packed programs.
2 Packer-specific Gene Extraction We first record the packed
program’s runtime information using dynamic instrumentation.
Guided by the extracted section information, we adopt control flow
analysis to discover unpacking routine instructions that are also
1We show a long YARA rule with 238 bytes in Appendix B, Fig. 12.

visible to static analysis. Then, we find similar unpacking routine
instructions that are reused in the same-packer protected programs.
These instructions are candidates for packer-specific genes.
3 Rule Generation At last, our framework automatically gener-
ates YARA rules from our extracted packer-specific genes. Accord-
ing to the information provided by the similarity analysis, it can
adopt appropriate special constructions (e.g., wildcards) into YARA
rules. In addition, the generation step interacts with a byte selection
strategy to select the rules with a lower mismatch probability.
4 Byte Selection Unlike existing packer rule development that
relies on human analysts’ experience, we systematically evaluate
the misplace matching possibility to guide byte selection. We first
convert the given bytes to possible mismatched instructions based
on our predicting disassembly technique. Then, we use an N-gram
technique to calculate the possibility that the converted instructions
appear in real-world programs. It helps us to filter out the byte
strings exhibiting a high mismatch probability.

4 PACKED PROGRAM PREPROCESSING
This preprocessing step prepares packed programs and collects
necessary information from synthesized programs to assist the
packer-specific gene extraction process.

Inspired by the chosen-instruction attack [51] learning knowl-
edge through interaction with code virtualization obfuscators, we
cover different unpacking routines of packers by proactively synthe-
sizing packed programs. Note that the unpacking routine attached
to the packed program is irrelevant to the semantics of the input
program’s instructions. The input program only needs to meet the
requirements of the packing tool such as file size. The major fac-
tor determining the unpacking routine’s diversity is the packer’s
obfuscation configurations, because the specific compression or de-
cryption algorithm—the core of the unpacking routine, is controlled
by the obfuscation configurations. To cover different unpacking
routines, we traverse every configuration combination provided by
the packer and synthesize corresponding packed programs.

To assist the discovery of statically visible unpacking routine
instructions at runtime, we first collect the section information (i.e.,
name and address) of the packed programs. Because a notable fea-
ture of unpacking routines is that they need to place the unpacked
original instructions and data back at the original virtual address.
For example, the unpacked instructions have to be placed at the vir-
tual address of the original non-packed program’s “.text” section
at runtime. With the help of the collected section information, we
monitor the regions of packed program that are written then get
executed by the statically visible, unpacking routine instructions;
we also assign labels to these instructions during dynamic analysis.

4

Anonymous submission #396 to ACM CCS 2023

YARA Rules

Program
𝑃

Packed Programs
𝒪(𝑃)

Check

…

…

Packer-Specific Gene
Extractor

Unpacking Routine
Discover

Similar Instruction
Extractor

Bytes Selection

Misplace Match Detector

Rule Generator

Trace Recorder

Intel Pin [53]
Packer
𝒪

Binary

Preprocessed Info

Predicting Disassembly

Rules Information
(Corresponding Disassembly

Instructions of YARA rules;
Packer-Specific Genes;
Unpacking Routines;）

1 2 3

4Different Obfuscation
Configurations

Figure 4: The overall workflow of PackGenome framework.

5 PACKER-SPECIFIC GENE EXTRACTION
In this section, we describe how to extract packer-specific genes
from the unpacking routine instructions reused in the same-packer
protected programs. We first record the execution trace of the
first unpacking layer and assign labels to instructions. To discover
unpacking routine instructions, we propagate the labels among the
recorded basic blocks guided by the control-flow information and
the execution numbers. At last, we extract packer-specific genes
from similar instructions reused in unpacking routines.

5.1 Recording the First Unpacking Layer
Execution Trace

Sophisticated packers usually adopt obfuscation (e.g., self-modifying
code) to frustrate static disassembly [52]. It is difficult for static anal-
ysis to correctly extract unpacking routine instructions from the
obfuscated binary. Therefore, we adopt the Intel Pin [53] framework
to record the runtime information of the unpacking routine instruc-
tions that are visible to static analysis (i.e., the first unpacking layer).
The reason is that YARA and other signature-based detectors only
search patterns from the programs statically.

Our Pintool records the statically visible instructions that exist
in the main executable and collects runtime information at the basic
block level. The recorded trace information includes the memory
address, the length of instruction bytes, the basic block’s execution
numbers, instruction bytes of basic blocks, and labels. To monitor
the “written-then-executed” behaviors of instructions, we employ
the runtime monitoring techniques used in Deep Packer Inspec-
tor [4]. During dynamic analysis, our Pintool assigns labels to in-
structions according to their runtime behaviors. If an instruction
𝐼 writes unpacked instructions 𝐼 ′ to the original code section and
𝐼 ′ gets executed at runtime, this instruction 𝐼 will be assigned a
label. Note that sophisticated packed programs may adopt multi-
ple unpacking layers [4], which iterate the procedure of writing
to allocated memory and then executing the written memory. We
need to monitor the “written-then-executed” region written by the
instructions of the first unpacking layer (e.g., “Unpacking Layer 1”
in Fig. 1) and assign labels to these instructions.

5.2 Discovering Unpacking Routine
Instructions

Note that our Pintool only assigns labels to the instructions that
are directly written to the monitored address such as the “written-
then-executed” region. It ignores other parts of unpacking routine
instructions that only decode unpacked data without writing to the

monitored address at runtime. To find complete unpacking routine
instructions, we propagate labels of instructions to related basic
block 𝐵 based on control flow analysis.

In particular, we only propagate labels among the 𝐵 with sim-
ilar execution numbers to avoid propagating labels to the entry
point instructions, which can be easily diversified by packers. The
reason is that the instructions pertaining to the decompression (or
decryption) function are executed considerably more times than
other instructions. Since the execution numbers of the recorded
basic block 𝑁𝐵 are mainly decided by the size of packed data, the
𝑁𝐵 of different packed programs could vary greatly. Therefore, we
compare the relative execution numbers of 𝑁𝐵 . Formally, we define
the relative execution numbers 𝑅𝐸𝑁 (𝐵𝑖) of the given basic block
𝐵𝑖 as follows:

𝑅𝐸𝑁 (𝐵𝑖) =
𝑁𝐵𝑖∑𝑚
𝑗=1 𝑁𝐵 𝑗

(1)

where𝑚 is the total number of 𝐵, and 𝐵𝑖 belongs to recorded ba-
sic blocks {𝐵1, ...𝐵𝑚} of a single trace. We use 𝑅𝐸𝑁 (𝐵𝑖) to find
high-frequency labeled basic blocks 𝐵𝑖 . Then, we strip off the self-
modified instructions from the labeled 𝐵 by comparing the recorded
bytes of instructions with the bytes statically extracted from the
same address. The rest of the statically visible unpacking routine
instructions are candidates for packer-specific genes.

5.3 Extracting Packer-specific Genes
To extract the packer-specific genes from the unpacking routines
instructions, we find similar instructions from the reused unpacking
routines. We first calculate the similarity of labeled basic blocks
ℬ from multiple same-packer protected programs. Then, we use
the similarity of ℬ to guide the selection of packer-specific genes,
and prepare the similarity information (e.g., the offset of different
bytes) of syntactically similar instructions for our rule generator.

Given two packed programs 𝑃𝑎 and 𝑃𝑏 , we first collect the la-
beled basic blocks: {ℬ𝑎1, ...,ℬ𝑎𝑛} and {ℬ𝑏1, ...,ℬ𝑏𝑛}, respectively.
To discover the ℬ reused in packed programs, we compare the
similarity of different ℬ using the following two steps.
Bytes Given ℬ𝑎𝑖 and ℬ𝑏 𝑗 , we first directly compare their bytes.
If their bytes are identical, we will skip the following comparison.
Otherwise, we compare them at the slice level.
Slice To overcome the obfuscations adopted by the sophisticated
packers, we compare the slices extracted from the ℬ. We first de-
composeℬ into slices 𝑆 by performing the backward slicing starting
from the outputs of ℬ. Then, we calculate the statistical similari-
ties [37] of slices and lift slices’ similarity into the similarity between

5

Anonymous submission #396 to ACM CCS 2023

1 rule Packer_v1 {
2 strings:
3 $a = {a4 eb} //𝑃𝑎 = 0.7
4 $b = {21 41 3c e8 74} //𝑃𝑏 = 0.5
5 $c = {8b 96 8c 00 00 00 8b c8 c1 e9 10 33 db 8a 1c 11

8b d3 eb} //𝑃𝑐 = 0
6 condition:
7 $a and $b and $c
8 }
9 rule Packer_v2 {
10 strings:
11 $a = {a4 eb} //𝑃𝑎 = 0.7
12 $b = {21 41 3c e8 74} //𝑃𝑏 = 0.5
13 condition:
14 $a and $b
15 }

Figure 5: The example of YARA rules with calculated mis-
place matching probability.

ℬ. We define the similarity of slice pairs as follows:

𝑆𝑖𝑚𝑆𝑙𝑖𝑐𝑒 (𝑆𝑎, 𝑆𝑏) =
𝑛∑︁

𝑘=1,𝑙=1
𝐼𝑘 ∈𝑆𝑎,𝐼𝑙 ∈𝑆𝑏

𝑆𝑖𝑚𝐼𝑛𝑠 (𝐼𝑘 , 𝐼𝑙)
/
𝑛 (2)

where 𝑆𝑎 and 𝑆𝑏 have the same output operands, 𝑛 is the maximum
instruction number of 𝑆𝑎 and 𝑆𝑏 , and the 𝑆𝑖𝑚𝐼𝑛𝑠 (𝐼𝑘 , 𝐼𝑙) is used to
compare the similarity of instructions, which will return 1 when
the instruction format (i.e., mnemonic and operand types such as
REG) of 𝐼𝑘 and 𝐼𝑙 are the same, otherwise return 0. Then, we lift the
slices’ similarity into the similarity of ℬ by the calculation defined
as follows:

𝑆𝑖𝑚𝐵𝑆 (ℬ𝑎,ℬ𝑏) =
𝑛∑︁

𝑖=1, 𝑗=1
𝑆𝑖 ∈ℬ𝑎,𝑆 𝑗 ∈ℬ𝑏

𝑆𝑖𝑚𝑆𝑙𝑖𝑐𝑒 (𝑆𝑖 , 𝑆 𝑗)
/
𝑛 (3)

where 𝑛 is the maximum slice number of ℬ𝑎 and ℬ𝑏 . If each slice
group of the given two ℬ is syntactically similar, the ℬ𝑎 and ℬ𝑏 are
highly similar at the slice level.

According to the similarity of ℬ, we collect ℬ as packer-specific
genes to generate rules. The results of the above comparison can
be divided into the following two equivalent scenarios.
Completely Equivalent If the bytes of given recorded basic blocks
ℬ𝑎𝑖 and ℬ𝑏 𝑗 are identical, we consider ℬ𝑎𝑖 and ℬ𝑏 𝑗 are completely
equivalent. For example, the compression packers (e.g., UPX) are
reusing exactly the same unpacking routine instructions in each
packed program (detailed in Sec. 7.3). The completely equivalent
bytes can be directly used to generate YARA rules for packer detec-
tion.
Partially Equivalent When packers adopt obfuscation to pro-
tect unpacking routine instructions, we may find ℬ𝑎𝑖 is only par-
tially equivalent to ℬ𝑏 𝑗 . It means that they have similar slices but
different bytes. For example, the two slices “mov ecx, 0x579;
dec ecx;” and “mov ecx, 0x586; dec ecx;” extracted from
Enigma-packed programs are similar but have different bytes due
to two different operand values of mov instructions. The ℬ with a
higher 𝑆𝑖𝑚𝐵𝑆 (ℬ𝑎,ℬ𝑏) are preferred candidates for packer-specific
genes.

6 YARA RULE GENERATION
Given packer-specific genes, we first generate hexadecimal string

rules (HSR) from each basic block of the packer-specific genes based

on the similarity information. If the bytes of packer-specific genes
are completely equivalent, we directly convert these bytes to the
HSR. Otherwise, we locate different bytes from the partially equiv-
alent bytes, replace them with the elaborated special constructions
(e.g., wildcards), and construct HSR. The minimum length of HSR is
two. Next, we take a byte selection strategy to minimize misplace
matching errors for the generated YARA rules.

6.1 Byte Selection
Our byte selection strategy calculates the misplace matching prob-
ability of the input YARA rules and guides the selection of YARA
rules. Specifically, given an input YARA rule, we first calculate the
misplacematching probability of each hexadecimal string rule 𝑃𝐻𝑆𝑅 .
Thanks to our predicting disassembly technique, we transform the
mismatching probability into the occurrence probability of possible
mismatched instructions (detailed in Sec. 6.2). Then, we multiply
each 𝑃𝐻𝑆𝑅 to compute the mismatch probability of a single YARA
rule 𝒫𝑟𝑢𝑙𝑒 , and filter out the rules with high mismatching probabil-
ity. Taking the rules in Fig. 5 as an example, the misplace matching
probability of the rule Packer_v1 is𝒫𝑃𝑎𝑐𝑘𝑒𝑟_𝑣1 = 𝑃𝑎∗𝑃𝑏 ∗𝑃𝑐 . Since
𝑃𝑐 = 0,𝒫𝑃𝑎𝑐𝑘𝑒𝑟_𝑣1 = 0, whichmeans the rule Packer_v1will not
lead to misplace matching errors. In contrast, the rule Packer_v2
has a higher misplace matching probability 𝒫𝑃𝑎𝑐𝑘𝑒𝑟_𝑣2 = 𝑃𝑑 ∗ 𝑃𝑒 =

0.35. Therefore, our strategy will only retain the rule Packer_v1.

6.2 Calculating Misplace Matching Probability
According to the mismatch type of HSR, Fig. 6 shows how we
calculate misplace matching probability of HSR 𝑃𝐻𝑆𝑅 in two ways.
HSR entirely belongs to a single instruction. The 𝑃𝐻𝑆𝑅 is the
possibility of corresponding mismatched instruction 𝐼 occurring in
real-world programs. In this scenario, the length of possible mis-
matched HSR is in the interval [2, 15], because the minimum length
of HSR is 2 and the maximum byte length of x86/x64 instruction
is 15. We first apply the predicting disassembly technique to find
possible mismatched instructions. It synthesizes a set of possible
mismatched instructions {𝐼1, ..., 𝐼𝑛} from the given HSR (detailed in
Sec. 6.3). Then, we compute the occurrence probability of each in-
struction 𝑝𝐼 in the instruction database2. The 𝑃𝐻𝑆𝑅 is the maximal
probability of 𝑝𝐼 . i.e., 𝑃𝐻𝑆𝑅 =𝑚𝑎𝑥 (𝑝𝐼1 , ..., 𝑝𝐼𝑛).
HSR partially belongs to a single instruction. The 𝑃𝐻𝑆𝑅 is
the occurrence probability of all possible mismatched instruction
sequences 𝐼𝐿 that appear in real-world programs. In this scenario,
the given HSR consists of 𝑥 bytes (𝑥 ≥ 2), and only the first 𝑖 (𝑖 ∈
[1, 𝑥−1], 𝑖 ≤ 15) bytes of HSR can be mismatched to the tail bytes of
one single instruction. We first adopt the predicting disassembly to
synthesize a set of possible mismatched instructions 𝑈 = {𝐼1, .., 𝐼𝑛}
from the first 𝑖 bytes of HSR. Then, we combine each instruction
of 𝑈 with the instruction sequences disassembled from the rest
𝑥 − 𝑖 bytes as 𝐼𝐿. To calculate the occurrence probability of possible
mismatched instruction sequences 𝑝𝐼𝐿 , we apply a standard N-
gram analysis to process each 𝐼𝐿. Then, we search converted 𝐼𝐿

from our constructed N-gram database 2 and calculate the 𝑃𝐻𝑆𝑅 =

𝑚𝑎𝑥 (𝑝𝐼𝐿1 , ..., 𝑝𝐼𝐿𝑛).

2The instruction database and N-gram database are created from the dataset NPD,
including more than 20,000 samples collected in the real world (detailed in Sec. 7.1).

6

Anonymous submission #396 to ACM CCS 2023

Predicting Disassembly

Fully Mismatched to An Instruction

Partially Mismatched to An Instruction

𝐼!, 𝐼𝐿!: Possible Mismatched Instructions

2-len 𝐻𝑆𝑅

5-len 𝐻𝑆𝑅

Predicting Disassembly

Disassembly inc ecx
shr edx, 7

Permutation

Search in
N-gram Database...

shld ebx, ebp, 0

mov ecx, dr0
inc ecx
shr edx, 7

𝑰𝒊"𝟏
inc ecx
shr edx, 7

...

Search in
Instruction Database

P"#$ = max(𝑃%$, … , 𝑃%%)…
15-len 𝐻𝑆𝑅

…

𝐼!

𝐼"

Combination

n-len 𝐻𝑆𝑅

…
i=2

i=4

𝑰𝒊

𝑰𝒊$𝟏

…

𝑰𝑳𝒊

𝑰𝑳𝒊$𝟏
P"#$ = max(𝑃%&$, … , 𝑃%&%)

P"#$: Misplace Match Probability𝐻𝑆𝑅: Hexadecimal String Rule 𝑃%&,𝑃%&& : Occurrence Probability

2-len 𝐻𝑆𝑅

…

…

a4 eb

Bytes

21 41

mov ecx, dr0

opcode

opcode

Type I Predicting fromOperand

Type II Predicting from Both Opcode andOperand

operand
Possible Mismatch Instructions

...
2

0f a4 eb 00

0f 21 41

Misplace Matched
Byte

operandopcode

02 a4 eb 00 00 00 00add ah, byte ptr [ebx + ebp*8]

Searching Intel XED Rules

Mod=10, Reg/Opcode=100, R/M=100a4
eb

10100100
11101011 [ebx + ebp*8]

1

Figure 6: The process of calculating the misplace matching probability of different hexadecimal string rule.
Different from the prior N-gram based techniques (e.g., MutantX-

S [54]) that only extract the opcode of instructions, we use four com-
ponents (i.e., prefix, opcode, mnemonic, and the format of operands)
to represent an instruction during the N-gram analysis. The rea-
son is that the opcode may not fully represent the semantics of
instructions. The instructions with the same opcode could have
totally different semantics. For example, two semantically differ-
ent instructions “add eax, 0x41” and “or eax, 0x41” share the
same opcode 0x81 (shown in Appendix Fig. 15).
Examples. The two-bytes HSR $a in Fig. 5 can be mismatched in
two ways. For the HSR $a entirely belonging to a single instruction,
we calculate the probability 𝑃𝑎 = 0.7. For the HSR $a partially
belonging to a single instruction, we calculate the probability 𝑃𝑎 =

0.3. Since the maximum 𝑃𝑎 = 0.7, the HSR $a should be combined
with the HSR that has a low misplace matching probability when
constructing YARA rules. Another example is the 19-bytes HSR
$c. It can only partially belongs to a single instruction. Since the
maximum 𝑃𝑐 = 0, the HSR $c can be directly used in any YARA
rules.

6.3 Predicting Disassembly
Please note that our goal is to find every possible instruction that
can be fully misplace-matched by HSR. Intuitively, the analysts can
brute-force traverse every combination of bytes that can be mis-
matched by HSR. However, they would face an ultra-large search
space consisting of 25615 combinations of bytes. Because the max-
imum byte length of the x86/x64 instruction is 15 and the value
of each byte is in the interval [0, 255]. For example, to find the
instructions that can be fully misplace-matched by the shortest
HSR (i.e., two bytes), the analysts have to traverse more than
25615−2 ≈ 2 ∗ 1031 combinations of bytes.

Mod Reg/Opcode R/M

Mod R/MOpcode SIB Displacement ImmediateInstruction Prefix

2 bit 3 bit 3 bit

1-, 2-,or
3- byte

1 byte
(optional)

1 byte
(optional)

1, 2, or 4 bytes
(optional)

1-4 byte
(optional)

Operands

Figure 7: The Intel instruction encoding format.

Therefore, to efficiently predict every possible misplace-matched
instruction of HSR, we propose the predicting disassembly tech-
nique. Given the input HSR, we first search the qualified Intel XED
rules that can hold the full bytes of mismatched HSR. We choose
Intel XED rules as they reveal each combination of Intel instruction
encoding. To find the qualified XED rules, our approach trans-
forms HSR into searchable formats based on the encoding gram-
mar of XED rules. For example, as shown in 1 of Fig. 6, the byte
“a4” would be converted to the format Mod=10, Reg/Opcode=100,
R/M=100. According to the components of XED rules matched by
transformed HSR, the transformation and prediction process can
be divided into the following three scenarios.
Predicting from Opcode (and Prefix) As defined in the Intel in-
struction encoding, the combination of opcode and prefix consists
of predefined concrete values. After searching in the combinations
of opcode and prefix, we observe that our generated HSR do not
mismatch any opcode combinations of instructions. Because the
last byte of our generated HSR is the opcode of control transfer
instructions and the rest bytes of HSR are converted from normal
disassembly instructions. Therefore, HSR cannot satisfy any combi-
nations of opcode and prefix. Our approach only needs to process
the following two types.
Type I Predicting from Operand Our approach transforms the
given HSR into the operand encoding format of XED rules, and col-
lects the qualified XED rules that have the same operand encoding

7

Anonymous submission #396 to ACM CCS 2023

format as the transformed HSR. As shown in Fig. 7, the components
of the operand encoding include Mod R/M, SIB, Displacement,
and Immediate.

For the given HSR mismatching the Mod R/M and SIB, we con-
vert HSR to the operand encoding format and find the qualified
Intel XED rules. As the example 1 shown in Fig. 6, given HSR “{a4
eb}”, we first convert the byte “a4” to Mod=10, Reg/Opcode=100,
R/M=100 based on the Mod R/M encoding scheme. After verifying
the correctness of encoding, we convert the byte “eb” to the operand
[ebx+ebp*8] based on the SIB encoding scheme. For the given
HSR mismatching the Displacement and Immediate, we can di-
rectly convert HSR to the hexadecimal bytes. However, the prob-
ability of HSR mismatch in the Displacement and Immediate is
negligible, because these components can be arbitrary hexadeci-
mal bytes from 0x0 to 0xffffffff. Finally, we synthesize 9,055
instructions that can be mismatched by “{a4 eb}”.
Type II Predicting from Both Opcode and Operand We search
the first several bytes of HSR from the combinations of opcode and
prefix, and collect the qualified Intel XED rules. Then, we treat the
rest bytes of HSR as Type I and search for the qualified rules from
prior collected Intel XED rules. As the example 2 shown in Fig. 6,
HSR’s first byte “a4” mismatches the tail of opcode “0fa4” and the
second byte “eb” mismatches the head of the operand “eb00”. In
total, we synthesize one instruction that can be Type II mismatched
by “{a4 eb}”.

After collecting the qualified Intel XED rules, the predicting dis-
assembly synthesizes the possible mismatched instructions from
the collected rules. We describe the detailed process of predicting
disassembly in Appendix Algorithm 1. Given the input HSR “{a4
eb}”, we synthesized 9,056 instructions. Then, we calculate the
occurrence probability of each synthesized instruction. The max-
imum occurrence probability 𝑃𝐻𝑆𝑅 = 0.7, which means this HSR
can be easily mismatched. When constructing the YARA rules, it
should be combined with the HSR that has a low misplace matching
probability.

7 EVALUATION
In this section, we evaluate PackGenome by answering the follow-
ing four research questions (RQs).
• RQ1: Can PackGenome effectively generate detection rules

for different types of packers?
• RQ2: How are the accuracy and efficiency of PackGenome’s

generated rules compared to human-written rules and other
automated rule generators?

• RQ3: How is the scalability of PackGenome’s generated rules
on detecting packed samples?

• RQ4: How is the performance of PackGenome’s generated
rules when detecting programs in the wild?

To answer RQ1, we apply PackGenome to generate 70 YARA
rules for 20 popular packers, and evaluate the contributions of our
byte selection technique (Sec. 7.2). We also discuss the new find-
ings of our study (Sec. 7.3). For RQ2, we design two experiments
to measure the accuracy of different rules (Sec. 7.4). To evaluate
the efficiency, we compare the running time of YARA and Detect
it Easy (DIE) on samples with four different magnitudes (Sec. 7.5).
For RQ3, we evaluate generated rules on the packed programs with

multiple versions. We also measure the scalability of PackGenome
on Linux packed programs, custom packers, and low-entropy sam-
ples (Sec. 7.6). For RQ4, we evaluate PackGenome on the real-world
malware samples and perform case studies to show the feasibility
of detecting in-the-wild custom packers and adversarial samples
(Sec. 7.7 and Appendix C, D, E, F).

7.1 Experimental Setup and Datasets
Peer Rules for Comparison We first collect public-available
human-written packer detection rules from GitHub, including 9,296
rules from six open-source YARA rule libraries [45–50], and 5,703
rules converted from PEiD and ExeInfo PE [55]. After removing
duplicates, we obtained 10,249 unique rules. Among the collected
rules, only 44 rules support x64 packed program detection. Mean-
while, we compare PackGenome with the state-of-the-art automatic
rule generation tool, AutoYara [21], which combines a biclustering
algorithm and large N-grams to generate high-quality rules from
limited samples.
Packers for Rule Generation We select off-the-shelf packers
from recent papers [6, 38]. Finally, we shortlist 20 packers (listed
in Table 2) because they can work properly in modern operating
systems. They are used to generate x86/x64 Windows packed pro-
grams. As the existing x64 human-written rules only support four
packers (i.e., UPX, MPRESS, Themida, and Enigma), we also use
these four packers to generate x64 packed programs.
Rule Generation Datasets (RGD) We traverse multiple versions
and configurations of 20 off-the-shelf packers to generate packed
programs (RGD). Given each configuration of packers, we gener-
ate three packed samples as the input of PackGenome during the
experiment. The purpose here is to estimate the performance of
PackGenome in the worst scenario that was pointed out by Au-
toYara, i.e., the number of the same-packer protected programs is
limited in real-world scenarios. Similarly, we generate 16 packed
samples, greater than most rule generation scenarios (i.e., ≤10 sam-
ples) reported in the AutoYara paper [21], as the input of AutoYara
to generate rules for each configuration of packers.
Testing Datasets To construct the labeled packed samples dataset
LPD that links to known packers, we first generated 38,663 x86 pro-
grams and 2,237 x64 programs by combining 20 off-the-shelf pack-
ers withmultiple versions and configurations.We also constructed a
non-packed samples dataset NPD to measure the false positive rates
of rules. This dataset consists of 26,326 non-packed malware sam-
ples retrieved from the recent work [17], and 1,224 collected real-
world benign programs such as system files. To evaluate the perfor-
mance of rules in the real world, we collected 579,832 malware sam-
ples from VX-underground [56], VirusTotal, and GitHub [57, 58].
They are divided into three categories. We use 560,285 Windows
APT and malware samples as WD1 to evaluate the effectiveness
of the rules. We also retrieved 18,288 packed and evasive samples
from the low entropy dataset [17] (WD2). It helps us to evaluate
the robustness of rules on adversarial samples. Furthermore, we
retrieved 1,302 x86/x64 Linux malware as WD3, which is used to
evaluate the scalability of our generated rules on different systems.
Testing Environment We run all experiments on a testbed ma-
chine with Intel i7-6700 CPU (4 cores, 3.40GHz), 32GB RAM, 1.8TB
Hard Disk, running Windows 10.

8

Anonymous submission #396 to ACM CCS 2023

Table 2: Comparing PackGenome with other rules on the LPD dataset. “Configurations” reports the obfuscation configurations
of packers we use to generate packed programs. “Related” means the configuration that affects the generated unpacking routine
instructions and “Total” means the total number of configurations used in the program generation process. “Obfuscation”
reports the obfuscation adopted by the first layer of unpacking routines. “GR” reports the number of the generated rules. The
order of column “FPR” in “Our approach” is (PackGenome-N, PackGenome).

Packers # of Vers Configurations Obfuscation 1 Our Approach Human-Written Rules AutoYara[21] Detect It Easy [16]
Related Total GR FPR [%] FNR [%] Time [s] FPR [%] FNR [%] Time [s] FPR [%] FNR [%] Time [s] FPR [%] FNR [%] Time [s]

UPX 6 8 36 N 10 (13.5, 0) 0 1.9 100 0 5.7 22.7 68.0 1.2 0 0 729
Armadillo 3 5 33 EU;N 4 (100, 0) 0 8.5 79.3 6.29 28.4 100 42.3 4.2 0 0 592
MPRESS 3 1 10 N 2 (0, 0) 0 0.2 100 0 0.9 38.8 95.9 0.2 0 0 55
PECompact 2 5 46 N 5 (11.9, 0) 0 3.0 91.4 0 8.9 18.5 86.9 1.7 0 0 1032
ASPack 3 1 8 N 3 (14.2, 0) 0 1.3 100 0 4.3 19.5 70.7 0.9 0 0 503
VMProtect 2 6 10 VM 9 (96.4, 0) 0 11.6 15.9 0 17.6 19.0 88.7 5.4 0 0 545
FSG 1 1 1 N 1 (14.5, 0) 0 0.2 100 0 0.9 19.0 88.5 0.1 0 0 33
Obsidium 1 7 37 CF 7 (98.8, 0) 0 1.3 1.82 100 3.1 17.1 89.0 0.8 0 9.3 275
Petite 1 5 21 N 1 (12.5, 0) 0 0.5 3.03 0 1.8 19.6 98.7 0.4 0 0 166
kkrunchy 2 1 4 N 2 (26.0, 0) 0 0.2 2.33 1.95 0.9 31.9 73.5 0.1 0 0 42
MEW 1 2 9 N 2 (12.5, 0) 0 0.5 1.25 0 1.8 0.33 0 0.4 0 0.5 201
NsPack 3 1 15 N 1 (13.3, 0) 0 0.8 71.8 0 2.5 20.3 90.3 0.5 21.1 61.4 287

EU;SC;Themida 2 9 17 EU+VM;N 9 (1.0, 0) 0 12.6 10.7 35.8 26.3 19.5 67.5 6.5 5.33 0 639

ACProtect 2 2 14 N 3 (89.9, 0) 0 2.2 98.6 0 5.6 19.5 67.3 1.4 21.6 0 512
ZProtect 1 1 29 EU+CF 1 (100, 0) 0 1.1 5.08 24.9 2.9 19.2 17.8 0.6 0.08 0 212
Winlicense 1 2 31 EU+VM;EU 4 (0.1, 0) 0 8.1 19.7 0 16.4 19.5 78.1 4.1 8.28 0 413
Enigma 4 1 44 EU+SO 1 (100, 0) 0 7.1 100 0 12.7 8.42 0 4.2 0 0 698
MoleBox 1 1 10 N 1 (91.0, 0) 0 0.8 2.22 0 1.9 17.4 94.3 0.4 0 100 138
WinUpack 1 1 15 N 2 (12.0, 0) 0 0.3 100 0 1.3 18.5 92.5 0.2 0 0 138
expressor 1 2 15 N 2 (25.1, 0) 0 0.4 0 100 1.3 38.8 90.4 0.3 0 0 95

1 “N” means not obfuscated, “VM” means code virtualization obfuscation, “CF” means control-flow obfuscation, “EU” means the first layer of unpacking instructions are encrypt-
ed, “SO” means single obfuscation such as junk instructions, “+” means using both obfuscation at the same time, “;” separates multiple types of unpacking instructions.

7.2 Rule Generation of PackGenome
We use the RGD dataset as the input of PackGenome to generate
rules. To evaluate the effectiveness of PackGenome and the con-
tribution of the byte selection technique, we generate rules under
two different configurations: (i) PackGenome: PackGenome gen-
erates rules from programs packed in the same configuration of
packers. (ii) PackGenome-N: PackGenome without byte selection
technique. Then, we apply generated rules to the LPD dataset and
compare the detection accuracy. As shown in the “FPR” column
of “Our Approach” in Table 2, the byte selection technique can
effectively reduce the mismatch possibility of our generated YARA
rules. After inspecting the PackGenome-N generated rules, we find
that most false positives are introduced by the hexadecimal string
rules with a high mismatch possibility. For example, more than
thousands of false positives are caused by a Winlicense detection
rule, which contains 13 hexadecimal string rules with a mismatch
possibility greater than 0.8.

7.3 New Findings of Packers
We first apply PackGenome-generated rules to the labeled packed
dataset LPD (shown in Table 2), and examine extracted packer-
specific genes. The new findings of packers are described in the
following paragraphs.
Configuration of Packers As the configuration of packers con-
trols the decompression algorithms and obfuscations used in un-
packing routines, we traverse the configurations provided by the
packers. The total number of each packer’s configurations is shown
in the “Total” column of Table 2. We find that only parts of configu-
rations affect generated unpacking routines (shown in the “Related”
column of Table 2). Most of these configurations are the options of

compression algorithms. For example, UPX provides four compres-
sion options (i.e., Nrv2d, Nrv2e, Nrv2b, and LZMA).
Packer-specific Genes We notice that most of the extracted
packer-specific genes are the decompression (or decryption) func-
tions. The classification of packer-specific genes is shown in Fig. 10.
Many packers use similar unpacking algorithms, especially the stan-
dard decompression algorithms such as aPLib. For example, FSG
v1.x and MEW v1.x use the same unpacking routine instructions.
Obfuscation of Unpacking Routines We find out that six pack-
ers’ unpacking routines are obfuscated. ZProtect and Obsidium
adopt control-flow obfuscation to split their unpacking routine
into many small basic blocks. In their obfuscated unpacking rou-
tines, each chained basic blocks consist of only two instructions.
However, thanks to our byte selection strategy, we can combine
multiple short hexadecimal string rules to generate YARA rules
with a low mismatch possibility. VMProtect randomly inserts junk
instructions into the unpacking routines instructions. But our rules
can use wildcards to escape these junk instructions. Oreans Tech-
nologies’s Themida and Winlicense share the same instructions
to encrypt their unpacking routines and decrypt the first unpack-
ing layer at runtime. PackGenome can still capture their reused
decryption instructions as packer-specific genes.

Answer to RQ1: We extract packer-specific genes and generate
70 rules for 20 off-the-shelf packers. Our byte selection tech-
nique can help PackGenome generate rules with a low misplace
matching possibility.

9

Anonymous submission #396 to ACM CCS 2023

Table 3: Comparing PackGenome with other rules on the
NPD dataset. Due to space limitations, we summarize the
detection results of 20 packers.

PackGenome Human-Written Rules AutoYara[21] Detect It Easy [16]
LPDrules FPR [%] Time [s] FPR [%] Time [s] FPR [%] Time [s] FPR [%] Time [s]
Total (20) 0 40.8 22.8 73.2 18.9 26.6 0 5205

PackGenome AutoYaraHuman-written Rules DIE

101

102

103

104

To
ol

s S
ca

nn
in

g
Ti

m
e

(S
ec

on
ds

)

500,000 samples
100,000 samples
50,000 samples
10,000 samples

Figure 8: Scanning time comparison under four different
sample magnitudes.

7.4 Accuracy
Our generated rules should accurately identify packed programs
and ignore non-packed programs. To validate this hypothesis, we
conducted the following two experiments.
Experiment I: Matching Labeled Packed Programs We apply
each tool to the LPD dataset. As can be seen from Table 2, our rules
outperform other rules. In contrast, AutoYara-generated rules can
only detect a limited number of packed programs correctly, because
they usually contain the common strings (e.g., “GetProcAddress”)
that are widely used by different packers. Meanwhile, AutoYara’s
large N-gram (n≥8) cannot capture the features of the unpacking
routines protected by control-flow obfuscation. Another observa-
tion is that DIE performs better than other human-written rules.
After examining the signature rules of DIE, we find out that many
rules are created from the metadata of packers (e.g., the section
name and unique strings). Unfortunately, they can be easily evaded
or misled by in-the-wild custom packers (detailed in Sec. 7.7).
Experiment II: Matching Non-packed Programs We use the
NPD dataset to measure the false positives rate that rules mistak-
enly match the non-packed programs. From the results shown in
Table 3, we can see that our rules and DIE have zero false positive
rate. In contrast, the human-written rules exhibit the highest false
positive rate. Most false positives are introduced by the rules created
from insignificant features. For example, an Armadillo packer de-
tection rule mistakenly identifies 56 non-packed samples as packed
(detailed in Appendix B).

7.5 Efficiency
To evaluate the efficiency of rules when processing massive pro-
grams, we compare our generated rules with human-written rules,
AutoYara, and DIE using different amounts of programs randomly

PackGenome Correctly Identified Numbers: 46,153+ 3,711

DIE Correctly Identified Numbers: 46,143+2,804

Standard UPX-Packed Numbers: 46,153

DIE Falsely Identified Numbers: 4,126

PackGenome Falsely Identified Numbers: 56

Figure 9: Comparison of UPX samples detected by
PackGenome and DIE on theWD1 dataset.

selected from the WD1 dataset. During the experiments, we use
four threads to execute YARA and DIE. The running times of YARA-
based tools and DIE are shown in Fig. 8. The scanning overhead
of our generated rules is on a par with the human-written YARA
rules and the AutoYara-generated rules. In contrast, DIE performs
worse than YARA-based tools, because the JavaScript-like grammar
of DIE spends a lot of time on parsing and matching programs.

Answer to RQ2: Our generated rules outperform state-of-the-
art human-written rules and an automatic rule generation tool on
the labeled packed dataset and non-packed dataset. The scanning
overhead of our generated rules is acceptable.

7.6 Scalability
Since the packer-specific genes are reused by the packers, our gener-
ated rules would be suitable for multiple scenarios such as detecting
custom packers. We performed the following four experiments to
validate this hypothesis.
Different Versions of Packers After examining the packer-
specific genes extracted from 11 packers with multiple versions
(detailed in Table 2), we find that nine packers reuse the unpacking
routines across different versions. Our rules can directly detect
multiple versions of packed programs that reuse the same unpack-
ing routines. For example, as the classification of packer-specific
genes shown in Fig. 10, four different versions of Enigma share the
same unpacking routines but use completely different entry point
instructions. A single PackGenome-generated rule is enough to
detect different versions of Enigma-packed programs. In contrast,
human analysts have to repeat the tedious rule development process
when creating rules from the entry point instructions of packers.
For example, we find 61 human-written YARA rules are developed
for matching the entry point of Enigma-packed programs.
Different Systems A packer may support multiple OSs at the
same time. For example, UPX supports different executable for-
mats such as Linux and Windows programs. We use the Linux
malware samples datasetWD3 to evaluate whether our generated
rules, created only from UPX-packed Windows programs, can also
identify the UPX-packed Linux programs. Our evaluation shows
that PackGenome-generated rules can successfully recognize all of
87 UPX-packed Linux programs. Because UPX reuses the same in-
structions of the unpacking algorithm in generated x86/x64 Linux
and Windows packed programs. In contrast, only three human-
written rules, created from compression algorithms (e.g., Nrv2x),

10

Anonymous submission #396 to ACM CCS 2023

UPX
ver 100, ver 120,
ver 125, ver 200,
ver 309, ver 396

ACProtect
ver 132, ver 141

Armadillo
ver604, ver700, ver800

MPRESS
ver218, ver219

PECompact
ver311

ASPack
ver229, ver238, ver242

FSG
ver13

Obsidium
ver15

Petite
ver24

kkrunchy
ver023a

NsPack
ver23, ver37, ver41

MEW
ver12

Themida
ver237

ZProtect
ver160

Winlicense
ver239（custom1, custom2）

MoleBox
ver 43018

WinUpack
ver031

expressor
ver18（custom1, custom2）

LZMAT

Themida
ver304

Enigma
ver31, ver38, ver42, ver155

FFCE BriefLZ

Custom Decryption Algorithm

PECompact
ver3022, ver311

aPLib
Custom LZ-based

Nrv2e, Nrv2d, Nrv2b

MPRESS
ver127

Custom Unpacking Algorithm

VMProtect
ver246, ver 340

JCALG1

LZMA

PECompact
ver311

kkrunchy
ver023a2

UPX
ver 100, ver 120,
ver 125, ver 200,
ver 309, ver 396

Share the same unpacking routine in different versions

Customized standard algorithms

Armadillo (ASLR protected program)
ver604, ver700, ver800

PECompact
ver311

Figure 10: The classification of first layer unpacking routines by comparing with the packer-specific genes extracted from
PECompact-packed programs.

can detect 34 UPX-packed programs. These long-length rules con-
tain many consecutive basic blocks. They can be easily thwarted
by the control-flow obfuscations (detailed in Appendix B). DIE can
identify 64 programs. Because DIE’s meta-information-based UPX
detection rules are evaded by custom UPX packers.
Custom Packers This experiment evaluates the ability of our
generated rules on detecting custom UPX variants. We choose UPX
because it is the most widely used open-source packer and is usually
customized by malware authors. Malware authors typically cam-
ouflage the features of standard packers by modifying the unique
strings (e.g., “UPX”) or the entry point instructions [12]. We first
apply our generated rules and DIE on theWD1 datasets, and filter
out the programs packed by standard UPX. To identify standard
UPX-packed programs, we use the rules created from the entry
point instructions of the standard UPX-packed programs. Then, we
manually inspect whether the detected samples are generated by
custom UPX packers.

The experiment results show that our generated rules capture 907
unique custom packed programs with low false positives (shown
in Fig. 9 and Table 4). After examining the packed samples, we find
that these custom packers reuse the standard UPX’s decompression
algorithms. For example, we find that a packed sample from APT 29
can bypass the entropy-based detection and most human-written
rules, including the rules created from the entry point instructions
and rules of DIE (detailed in Appendix C).
Low Entropy Samples To demonstrate the robustness of our gen-
erated rules in detecting adversarial packed samples, we also apply
our rules to the WD2 dataset, which consists of the low entropy
packed programs discovered by the study [17]. Mantovani et al.’s
study [17] points out that the existing off-the-shelf packers detec-
tors (e.g., DIE) are unable to identify low entropy packed samples.
They attribute this to the finding that programs packed by off-the-
shelf packers would have a high entropy. However, different from
Mantovani et al. find only three samples packed by known packers,
PackGenome-generated rules identify 47 samples packed by the
off-the-shelf packers. These low entropy samples are protected by
the off-the-shelf packer combined with the low-entropy technique.

Table 4: Comparing with DIE in the WD1 dataset. We choose
five popular packers as targets and verify the detection re-
sults. “#UD” reports the number of unique detected samples
which cannot be discovered by another tool. “#FD” reports
the number of falsely detected samples.

Packers PackGenome Detect It Easy [16]
#UD #FD #Total #UD #FD #Total

Open Source Compression Algorithm
UPX 907 56 49,920 0 4,117 53,083
MPRESS 197 0 791 0 48 642
Close Source
ASPack 466 10 7,578 0 421 7,523
Obsidium 2 0 43 0 974 1,015
PECompact 9,449 138 16,440 0 12 6,805
Themida 35 1 1,422 0 2 1,388

For example, two samples with entropy less than 4.03 are packed
by standard NsPack (detailed in Appendix D).

Answer to RQ3: Our generated rules are suitable for detecting
different versions of packers. The rules created from packer-
specific genes can directly detect custom packers that reuse the
same unpacking routines.

7.7 Performance in the wild
To study the accuracy and robustness of our generated rules in the
real world, we compare our rules with DIE on the WD1 dataset.
We choose DIE as it outperforms other human-written rules and
AutoYara. Considering the sample number of WD1 is more than
560K, which exceeds the ability of manually reverse engineering.
We choose five popular packers (i.e., UPX, MPRESS, ASPack, Ob-
sidium, PECompact, and Themida) as targets, and filter out the
incomplete samples (e.g., unpacked failed samples).

3Existing work takes the entropy value of 7.0 or higher as the signal of a packed
program [4, 17].

11

Anonymous submission #396 to ACM CCS 2023

From the results shown in Table 4, we can find that our generated
rules perform better than DIE. Our generated rules have few to no
false positives. In contrast, DIE can be easily misled by in-the-wild
custom packers. The reason is that many rules of DIE rely on pars-
ing the meta-information of packed programs. But custom packers
can effortlessly eliminate these features, and even camouflage as
standard packers by using the same meta-information (e.g., the
custom packer camouflages as UPX detailed in Appendix E). In con-
trast, our generated rules can accurately identify packed programs
that reuse the unpacking algorithms of standard packers.

Answer to RQ4: Our generated rules created from the packer-
specific genes are robust to detect custom packers in the wild
with low false positive rates.

8 RELATEDWORK
We have summarized the literature of packer detection in Sec. 1
and Sec. 2.2. This section describes the related work on YARA
improvement and binary unpacking.
YARA Improvement We categorize the existing works of improv-
ing YARA rules into two directions: (i) automatically producing
YARA rules to reduce manual efforts, and (ii) optimizing YARA
rule search performance. YaraGenerator [59] generates rules based
on the most common textual features (e.g., strings) shared across
malware families. yabin [60] uses the fix-length bytes of function
prologues to generate rules. yarGen [61] creates rules from salient
text and hexadecimal strings, which are filtered from several pre-
built “good string” databases.AutoYara [21] combines large n-grams
search and biclustering algorithm to generate rules. It outperforms
the aforementioned rule generators and even skilled analysts. How-
ever, as admitted by AutoYara’s authors [21], binary packing can
impede all of the above YARA automation tools, because they create
rules from common textual strings or bytes of malware payload.
We have demonstrated that AutoYara’s performance on packed
programs is poor. An orthogonal work, YARIX [62], builds a prepro-
cessed inverted malware file index to efficiently search for YARA
rules. PackGenome-generated rules can also benefit from the search
engine of YARIX, and we expect several orders of magnitudes per-
formance boost on packed program detection.
Binary Unpacking Over the past two decades, this is a long-
standing challenge in malware analysis. Due to the rise of machine-
learning-based malware classifiers, binary unpacking has recently
undergone a renaissance [4, 6, 9, 17, 38, 63]. The classic way, rep-
resented by Deep Packer Inspector [4], dynamically monitors the
“written-then-executed” unpacking layers to identify the original
entry point (OEP). The recent innovations are to propose a new
heuristic to quickly determine the end of unpacking [38] or take
advantage of hardware features [9]. For example, BinUnpack [38]
monitors the API calls based on kernel-level DLL hijacking tech-
niques; it can quickly locate OEP by capturing the “rebuilt-then-
called” feature of import address tables. API-Xray [9] leverages
hardware-assisted tracing to defeat API obfuscation schemes and
then reconstruct API import tables, so that the unpacked malware
payload can be executed independently. Facing millions of mal-
ware samples, PackGenome is an appealing complement to generic

unpacking tools: once PackGenome rapidly identifies packed exe-
cutable files, they can be flagged as high priority for further binary
unpacking.

9 DISCUSSION
Missing Brand-new Packers Like other signature-based ap-
proaches, PackGenome bears with a similar limitation: it may miss
brand-new packers that reveal totally different signatures. If the
brand-new packer is accessible, PackGenome can still generate ro-
bust rules from proactively synthesized packed programs. As for the
inaccessible packers, one approach is to use PackGenome directly
generates rules from the manually collected packed programs that
are potentially protected by the same packer. Our experiments show
that PackGenome can successfully generate robust detection rules
for inaccessible packers (detailed in Appendix F). Another possible
countermeasure is to leverage the unpacking routine’s side channel
information. For example, the unpacking process performs itera-
tions of decryption or decompression, which can incur identifiable
deviations in hardware events [64]. We will explore the direction of
modeling hardware performance counter values to detect packers.
Unavoidable Byte Mismatch As discussed in Sec. 2.3, due to
the performance concern, signature-based detection tools mainly
search for bytes rather than the expected form of instructions.
Especially under the scope of full-binary matching, some YARA
rules will introduce false positives. On the other side, performing
binary disassembly and instruction searches are too expensive to
process large-scale programs. PackGenome attempts to reduce the
mismatch rate via our proposed byte selection strategy, which
strikes a delicate balance between byte mismatch and performance.
Heavyweight Obfuscation Another limitation of signature-based
detectors is that they cannot handle heavyweight obfuscation by
nature. YARA rules are like a piece of programming language but
only with limited grammar expression power, and we have already
adopted special constructions such as wildcards to overcome light-
weight obfuscations such as junk code. Determined attackers can
obfuscate packer-specific genes using syntactically different in-
structions. Like our response to brand-new packers, a promising
countermeasure is to explore tamper-resistant hardware features.
We leave it as our future work.

10 CONCLUSION
Over the past two decades, packed malware in circulation is a
tremendous amount. Security analysts rely on signature-based de-
tection to quickly determine the packing technique/tool used; after
that, unpacking a malware sample becomes easier. However, ex-
isting work on packer signature generation heavily depends on
human analysts’ experience, which makes the process of writing
and maintaining rules painful, error-prone, and tedious. In this pa-
per, we develop PackGenome, an automatic YARA rule generation
framework for packer detection. We harvest packer detection rules
from the unpacking routine, which is reused by the same-packer
protected programs. Furthermore, we propose the first model to
systematically evaluate the mismatch probability of bytes rules. Our
large-scale experiments show that PackGenome outperforms exist-
ing human-written rules and peer tools with zero false negatives,
low false positives, and a negligible scanning overhead increase.

12

Anonymous submission #396 to ACM CCS 2023

REFERENCES
[1] Trivikram Muralidharan, Aviad Cohen, Noa Gerson, and Nir Nissim. 2022. File

Packing from the Malware Perspective: Techniques, Analysis Approaches, and
Directions for Enhancements. ACM Computing Surveys (CSUR) (April 2022).

[2] Kevin A. Roundy and Barton P. Miller. 2013. Binary-Code Obfuscations in
Prevalent Packer Tools. ACM Computing Surveys (CSUR) 46, 1 (2013), 1–32.

[3] Miuyin Yong Wong, Matthew Landen, Manos Antonakakis, Douglas M. Blough,
Elissa M. Redmiles, and Mustaque Ahamad. 2021. An Inside Look into the
Practice of Malware Analysis. In Proceedings of the 28th ACM SIGSAC Conference
on Computer and Communications Security (CCS). ACM, 3053–3069.

[4] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and Pablo G. Bringas.
2015. SoK: Deep Packer Inspection: A Longitudinal Study of the Complexity of
Run-Time Packers. In Proceedings of the 36th IEEE Symposium on Security and
Privacy (S&P). IEEE, 659–673.

[5] Babak Rahbarinia, Marco Balduzzi, and Roberto Perdisci. 2017. Exploring the
Long Tail of (Malicious) Software Downloads. In Proceedings of the 47th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
IEEE, 391–402.

[6] Hojjat Aghakhani, Fabio Gritti, Francesco Mecca, Martina Lindorfer, Stefano
Ortolani, Davide Balzarotti, Giovanni Vigna, and Christopher Kruegel. 2020.
When Malware is Packin’ Heat; Limits of Machine Learning Classifiers Based
on Static Analysis Features. In Proceedings of the 27th Network and Distributed
System Security Symposium (NDSS). Internet Society.

[7] Christian Wressnegger, Kevin Freeman, Fabian Yamaguchi, and Konrad Rieck.
2017. Automatically Inferring Malware Signatures for Anti-Virus Assisted At-
tacks. In Proceedings of the 12th ACM Asia Conference on Computer and Commu-
nications Security (ASIA CCS). ACM, 587–598.

[8] Mario Polino, Andrea Continella, Sebastiano Mariani, Stefano D’Alessio, Lorenzo
Fontana, Fabio Gritti, and Stefano Zanero. 2017. Measuring and Defeating
Anti-Instrumentation-Equipped Malware. In Proceedings of the 14th International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA). Springer Cham, 73–96.

[9] Binlin Cheng, Jiang Ming, Erika A. Leal, Haotian Zhang, Jianming Fu, Guojun
Peng, and Jean Yves Marion. 2021. Obfuscation-Resilient Executable Payload
Extraction From Packed Malware. In Proceedings of the 30th USENIX Security
Symposium (USENIX Security). USENIX Association, 3451–3468.

[10] VirusTotal. VirusTotal - Stats. https://www.virustotal.com/gui/stats (accessed
on 2022-12-09).

[11] Erin Avllazagaj, Ziyun Zhu, Leyla Bilge, Davide Balzarotti, and Tudor Dumitras.
2021. When Malware Changed Its Mind: An Empirical Study of Variable Pro-
gram Behaviors in the Real World. In Proceedings of the 30th USENIX Security
Symposium (USENIX Security). USENIX Association, 3487–3504.

[12] Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Davide Balzarotti.
2018. Understanding Linux Malware. In Proceedings of the 39th IEEE Symposium
on Security and Privacy (S&P). IEEE, 161–175.

[13] Robert Lyda and JamesHamrock. 2007. Using EntropyAnalysis to Find Encrypted
and Packed Malware. IEEE Security and Privacy 5, 2 (2007), 40–45.

[14] Guhyeon Jeong, Euijin Choo, Joosuk Lee, Munkhbayar Bat-Erdene, and Heejo
Lee. 2010. Generic Unpacking using Entropy Analysis. In Proceedings of the 5th
International Conference on Malicious and Unwanted Software (MALWARE’10).
IEEE, 114–121.

[15] Munkhbayar Bat-Erdene, Taebeom Kim, Hyundo Park, and Heejo Lee. 2017.
Packer Detection for Multi-Layer Executables Using Entropy Analysis. Entropy
19, 3 (2017), 1–18.

[16] Horsicq. Detect-It-Easy. https://github.com/horsicq/Detect-It-Easy (accessed
on 2022-12-07).

[17] Alessandro Mantovani, Simone Aonzo, Xabier Ugarte-Pedrero, Alessio Merlo,
and Davide Balzarotti. 2020. Prevalence and Impact of Low-Entropy Packing
Schemes in the Malware Ecosystem. In Proceedings of the 27th Network and
Distributed System Security Symposium (NDSS). Internet Society.

[18] Fabrizio Biondi, Michael A. Enescu, Thomas Given-Wilson, Axel Legay, Lamine
Noureddine, and Vivek Verma. 2019. Effective, Efficient, and Robust Packing
Detection and Classification. Computers & Security 85 (2019), 436–451.

[19] Fabian Kaczmarczyck, Bernhard Grill, Luca Invernizzi, Jennifer Pullman, Ce-
cilia M. Procopiuc, David Tao, Borbala Benko, and Elie Bursztein. 2020. Spotlight:
Malware Lead Generation at Scale. In Proceedings of the 36th Annual Computer
Security Applications Conference (ACSAC). ACM, 17–27.

[20] Erik Bergenholtz, Emiliano Casalicchio, Dragos Ilie, and Andrew Moss. 2020.
Detection of Metamorphic Malware Packers Using Multilayered LSTM Net-
works. In Proceedings of the 22nd International Conference on Information and
Communications Security (ICICS).

[21] Edward Raff, Richard Zak, Gary Lopez Munoz, William Fleming, Hyrum S. An-
derson, Bobby Filar, Charles Nicholas, and James Holt. 2020. Automatic Yara
Rule Generation Using Biclustering. In Proceedings of the 13th ACM Workshop on
Artificial Intelligence and Security (AISec@CCS 2020). ACM, 71–82.

[22] Xianwei Gao, Changzhen Hu, Chun Shan, and Weijie Han. 2022. MaliCage:
A Packed Malware Family Classification Framework based on DNN and GAN.
Journal of Information Security and Applications 68 (2022), 2214–2126.

[23] Victor Manuel Alvarez. YARA — The Pattern Matching Swiss Knife for Malware
Researchers. https://virustotal.github.io/yara/ (accessed on 2022-12-09).

[24] Aldeid. PEiD. https://www.aldeid.com/wiki/PEiD (accessed on 2022-12-09).
[25] Evan Downing, Yisroel Mirsky, Kyuhong Park, and Wenke Lee. 2021. DeepRe-

flect: Discovering Malicious Functionality through Binary Reconstruction. In
Proceedings of the 30th USENIX Security Symposium (USENIX Security). USENIX
Association, 3469–3486.

[26] Kyuhong Park, Burak Sahin, Yongheng Chen, Jisheng Zhao, Evan Downing,
Hong Hu, and Wenke Lee. 2021. Identifying Behavior Dispatchers for Malware
Analysis. In Proceedings of the 2021 ACM Asia Conference on Computer and
Communications Security (ASIA CCS). ACM, 759–773.

[27] Unipacker. Unpacking PE files using Unicorn Engine. https://github.com/uniPa
cker/uniPacker (accessed on 2022-12-09).

[28] Daniel Votipka, Seth M. Rabin, Kristopher Micinski, Jeffrey S. Foster, and
Michelle M. Mazurek. 2020. An Observational Investigation of Reverse Engi-
neers’ Processes. In Proceedings of the 29th USENIX Security Symposium (USENIX
Security). USENIX Association, 1875–1892.

[29] Oreans Technologies. Themida Overview. https://www.oreans.com/themida.php
(accessed on 2022-12-09).

[30] Fanglu Guo, Peter Ferrie, and Tzi-cker Chiueh. 2008. A Study of the Packer
Problem and Its Solutions. In Proceedings of the 11th Recent Advances in Intrusion
Detection (RAID). Springer Berlin, Heidelberg, 98–115.

[31] Dhondta. Awesome Executable Packing. https://github.com/dhondta/awesome
-executable-packing (accessed on 2022-12-09).

[32] Ange Albertini. Packers. https://corkami.blogspot.com/ (accessed on 2022-12-09).
[33] Rufus Brown, Van Ta, Douglas Bienstock, Geoff Ackerman, and John Wolfram.

Does This Look Infected? A Summary of APT41 Targeting U.S. State Govern-
ments. https://www.mandiant.com/resources/apt41-us-state-governments
(accessed on 2022-12-09).

[34] Cisco Talos Intelligence Group. New Research Paper: Prevalence and impact of
low-entropy packing schemes in the malware ecosystem. https://blog.talosintell
igence.com/2020/02/new-research-paper-prevalence-and.html (accessed on
2022-12-09).

[35] Intel. Intel® 64 and IA-32 Architectures Software Developer Manuals. https://ww
w.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
(accessed on 2022-12-09).

[36] Ajit Varki and Tasha K. Altheide. 2005. Comparing the human and chimpanzee
genomes: Searching for needles in a haystack. Genome Research 15, 12 (2005),
1746–1758.

[37] Yaniv David, Nimrod Partush, and Eran Yahav. 2016. Statistical Similarity of Bi-
naries. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI). ACM, 266–280.

[38] Binlin Cheng, Jiang Ming, Jianming Fu, Guojun Peng, Ting Chen, Xiaosong
Zhang, and Jean-yves Marion. 2018. Towards Paving the Way for Large-
Scale Windows Malware Analysis: Generic Binary Unpacking with Orders-of-
Magnitude Performance Boost. In Proceedings of the 25th ACM SIGSAC Conference
on Computer and Communications Security (CCS). ACM, 395–411.

[39] Arne Swinnen and Alaeddine Mesbahi. 2014. One Packer to Rule them All:
Empirical Identification, Comparison and Circumvention of Current Antivirus
Detection Techniques. In BlackHat USA. BlackHat, 1–55.

[40] Erick Bauman, Zhiqiang Lin, and Kevin W. Hamlen. 2018. Superset Disassembly:
Statically Rewriting x86 Binaries Without Heuristics. In Proceedings of the 25th
Annual Network and Distributed System Security Symposium (NDSS). Internet
Society.

[41] Tomislav Pericin. 2011. Reversing software compressions: Tale of dragons and
men who slay them. In REcon 2011. REcon.

[42] the MITRE Corporation. Obfuscated Files or Information: Software Packing.
https://attack.mitre.org/techniques/T1027/002/ (accessed on 2022-12-09).

[43] Thomas Barabosch. The malware analyst’s guide to aPLib decompression. https:
//0xc0decafe.com/malware-analysts-guide-to-aplib-decompression (accessed
on 2022-12-09).

[44] Microsoft. PE Format. https://docs.microsoft.com/en-us/windows/win32/debug
/pe-format (accessed on 2022-12-09).

[45] Yara-rules. rules. https://github.com/Yara-Rules/rules (accessed on 2022-12-09).
[46] Avast. retdec. https://github.com/avast/retdec/tree/master/support/yara_patte

rns/tools (accessed on 2022-12-09).
[47] JusticeRage. Manalyze. https://github.com/JusticeRage/Manalyze (accessed on

2022-12-09).
[48] Godaddy. yara-rules. https://github.com/godaddy/yara-rules/ (accessed on

2022-12-09).
[49] AlienVault-OTX. OTX-Python-SDK. https://github.com/AlienVault-OTX/OTX-

Python-SDK (accessed on 2022-12-09).
[50] X64dbg. yarasigs. https://github.com/x64dbg/yarasigs (accessed on 2022-12-09).

13

https://www.virustotal.com/gui/stats
https://github.com/horsicq/Detect-It-Easy
https://virustotal.github.io/yara/
https://www.aldeid.com/wiki/PEiD
https://github.com/uniPacker/uniPacker
https://github.com/uniPacker/uniPacker
https://www.oreans.com/themida.php
https://github.com/dhondta/awesome-executable-packing
https://github.com/dhondta/awesome-executable-packing
https://corkami.blogspot.com/
https://www.mandiant.com/resources/apt41-us-state-governments
https://blog.talosintelligence.com/2020/02/new-research-paper-prevalence-and.html
https://blog.talosintelligence.com/2020/02/new-research-paper-prevalence-and.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://attack.mitre.org/techniques/T1027/002/
https://0xc0decafe.com/malware-analysts-guide-to-aplib-decompression
https://0xc0decafe.com/malware-analysts-guide-to-aplib-decompression
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://github.com/Yara-Rules/rules
https://github.com/avast/retdec/tree/master/support/yara_patterns/tools
https://github.com/avast/retdec/tree/master/support/yara_patterns/tools
https://github.com/JusticeRage/Manalyze
https://github.com/godaddy/yara-rules/
https://github.com/AlienVault-OTX/OTX-Python-SDK
https://github.com/AlienVault-OTX/OTX-Python-SDK
https://github.com/x64dbg/yarasigs

Anonymous submission #396 to ACM CCS 2023

[51] Shijia Li, Chunfu Jia, Pengda Qiu, Qiyuan Chen, Jiang Ming, and Debin Gao. 2022.
Chosen-Instruction Attack Against Commercial Code Virtualization Obfuscators.
In Proceedings of the 29th Network and Distributed System Security Symposium
(NDSS). Internet Society.

[52] Babak Yadegari and Saumya Debray. 2015. Symbolic Execution of Obfuscated
Code. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, 732–744.

[53] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation.
In Proceedings of the 2005 ACM SIGPLAN conference on Programming language
design and implementation (PLDI). ACM Press, 190–200.

[54] Xin Hu, Kang G Shin, Sandeep Bhatkar, and Kent Griffin. 2013. MutantX-S:
Scalable Malware Clustering Based on Static Features. In Proceedings of the
2013 USENIX Annual Technical Conference (USENIX ATC). USENIX Association,
187–198.

[55] A.S.L. EXEINFO PE. http://www.exeinfo.byethost18.com (accessed on
2022-12-09).

[56] Vx-underground team. vx-underground. https://samples.vx-underground.org/
(accessed on 2022-12-09).

[57] Cyber-research. APTMalware. https://github.com/cyber-research/APTMalware
(accessed on 2022-12-09).

[58] MalwareSamples. Linux-Malware-Samples. https://github.com/MalwareSample
s/Linux-Malware-Samples (accessed on 2022-12-09).

[59] Xen0ph0n. YaraGenerator. https://github.com/Xen0ph0n/YaraGenerator
(accessed on 2022-12-09).

[60] AlienVault-OTX. yabin. https://github.com/AlienVault-OTX/yabin (accessed on
2022-12-09).

[61] Neo23x0. yarGen. https://github.com/Neo23x0/yarGen (accessed on 2022-12-09).
[62] Michael Brengel and Christian Rossow. 2021. YARIX: Scalable YARA-based

Malware Intelligence. In Proceedings of the 30th USENIX Security Symposium
(USENIX Security). USENIX Association, 3541–3558.

[63] Guillaume Bonfante, Jose Fernandez, Jean-Yves Marion, Benjamin Rouxel, Fab-
rice Sabatier, and Aurélien Thierry. 2015. CoDisasm: Medium Scale Concatic
Disassembly of Self-Modifying Binaries with Overlapping Instructions. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security (CCS’15). ACM, 745–756.

[64] Jay Mayank Patel. 2019. On the Feasibility of Malware Unpacking with Hardware
Performance Counters. Master’s thesis. University of Texas at Arlington.

[65] Mariano Graziano, Davide Canali, Leyla Bilge, Andrea Lanzi, and Davide
Balzarotti. 2015. Needles in a haystack: Mining information from public dy-
namic analysis sandboxes for malware intelligence. In Proceedings of the 24th
USENIX Security Symposium (USENIX Security). USENIX Association, 1057–1072.

[66] Kent Griffin, Scott Schneider, Xin Hu, and Tzi Cker Chiueh. 2009. Automatic
generation of string signatures for malware detection. In Proceedings of the
12th Recent Advances in Intrusion Detection (RAID). Springer Berlin, Heidelberg,
101–120.

[67] Xin Hu, Tzi-cker Chiueh, and Kang G. Shin. 2009. Large-scale malware indexing
using function-call graphs. In Proceedings of the 16th ACM conference on Computer
and communications security (CCS). ACM Press, 611.

[68] David Dagon, Cliff Changchun Zou, and Wenke Lee. 2006. Modeling Botnet
Propagation Using Time Zones. In Proceedings of the 2006 Network and Distributed
System Security Symposium (NDSS). Internet Society, 2–13.

[69] Keane Lucas, Mahmood Sharif, Lujo Bauer, Michael K. Reiter, and Saurabh Shintre.
2021. Malware Makeover: Breaking ML-based Static Analysis by Modifying
Executable Bytes. In Proceedings of the 2021 ACM Asia Conference on Computer
and Communications Security (ASIA CCS). ACM, 744–758.

[70] Lamine Noureddine, Annelie Heuser, Cassius Puodzius, and Olivier Zendra. 2021.
SE-PAC: A Self-Evolving PAcker Classifier against rapid packers evolution. In
Proceedings of the 11th ACM Conference on Data and Application Security and
Privacy (CODASPY). ACM, 281–292.

[71] Brad Miller, Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Rekha Bach-
wani, Riyaz Faizullabhoy, Ling Huang, Vaishaal Shankar, Tony Wu, George Yiu,
Anthony D. Joseph, and J. D. Tygar. 2016. Reviewer Integration and Performance
Measurement for Malware Detection. In Proceedings of the 13th International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA). Springer Cham, 122–141.

[72] Roberto Perdisci, Andrea Lanzi, and Wenke Lee. 2008. McBoost: Boosting Scal-
ability in Malware Collection and Analysis Using Statistical Classification of
Executables. In Proceedings of the 24th Annual Computer Security Applications
Conference (ACSAC). IEEE, 301–310.

[73] Paul Royal, Mitch Halpin, David Dagon, Robert Edmonds, and Wenke Lee. 2006.
PolyUnpack: Automating the Hidden-Code Extraction of Unpack-Executing Mal-
ware. In Proceedings of the 22nd Annual Computer Security Applications Conference
(ACSAC). IEEE, 289–300.

[74] Binbin Liu, Junfu Shen, Jiang Ming, Qilong Zheng, Jing Li, and Dongpeng Xu.
2021. MBA-Blast: Unveiling and simplifying mixed boolean-arithmetic obfusca-
tion. In Proceedings of the 30th USENIX Security Symposium (USENIX Security).
USENIX Association, 1701–1718.

[75] Jiang Ming, Dongpeng Xu, Yufei Jiang, and Dinghao Wu. 2017. BinSim: Trace-
based Semantic Binary Diffing via System Call Sliced Segment Equivalence
Checking. In Proceedings of the 26th Usenix Security Symposium (USENIX Security).
USENIX Association, 253–270.

[76] Davide Balzarotti, Marco Cova, Christoph Karlberger, Christopher Kruegel, Engin
Kirda, and Giovanni Vigna. 2010. Efficient Detection of Split Personalities in
Malware. In Proceedings of the 17th Network and Distributes System Security
(NDSS). Internet Society.

[77] Guanhua Yan, Nathan Brown, and Deguang Kong. 2013. Exploring Discrimina-
tory Features for Automated Malware Classification. In Proceedings of the 10th
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA). Springer Berlin, Heidelberg, 41–61.

[78] M Zubair Shafiq, S Momina Tabish, Fauzan Mirza, and Muddassar Farooq. 2009.
PE-Miner: Mining Structural Information to Detect Malicious Executables in
Realtime. In Proceedings of the 12th Recent Advances in Intrusion Detection (RAID).
Springer Berlin, Heidelberg, 121–141.

[79] Monirul Sharif, Vinod Yegneswaran, Hassen Saidi, Phillip Porras, and Wenke Lee.
2008. Eureka: A framework for enabling static malware analysis. In Proceedings
of the 13th European Symposium on Research in Computer Security (ESORICS).
Springer Berlin, Heidelberg, 481–500.

[80] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. 2008. Ether:
Malware Analysis via Hardware Virtualization Extensions Artem. In Proceedings
of the 15th ACM conference on Computer and communications security (CCS). ACM
Press, 51.

[81] Markus Kammerstetter, Christian Platzer, and Gilbert Wondracek. 2012. Vanity,
Cracks and Malware Insights into the Anti-Copy Protection Ecosystem. In Pro-
ceedings of the 2012 ACM conference on Computer and communications security
(CCS). ACM Press, 809.

[82] Zynamics. zynamics.com - BinDiff. https://www.zynamics.com/bindiff.html
(accessed on 2022-12-09).

[83] Fortinet. Packers: What’s in the Box? https://www.fortinet.com/blog/threat-res
earch/custom-packer-tool-frenchy (accessed on 2022-12-09).

[84] Tuts 4 You. Tuts 4 You. https://tuts4you.com/ (accessed on 2022-12-09).
[85] Mi-Jung Choi, Jiwon Bang, Jongwook Kim, Hajin Kim, and Yang-Sae Moon. 2019.

All-in-One Framework for Detection, Unpacking, and Verification for Malware
Analysis. Security and Communication Networks 2019 (2019), 1–16.

14

http://www.exeinfo.byethost18.com
https://samples.vx-underground.org/
https://github.com/cyber-research/APTMalware
https://github.com/MalwareSamples/Linux-Malware-Samples
https://github.com/MalwareSamples/Linux-Malware-Samples
https://github.com/Xen0ph0n/YaraGenerator
https://github.com/AlienVault-OTX/yabin
https://github.com/Neo23x0/yarGen
https://www.zynamics.com/bindiff.html
https://www.fortinet.com/blog/threat-research/custom-packer-tool-frenchy
https://www.fortinet.com/blog/threat-research/custom-packer-tool-frenchy
https://tuts4you.com/

Anonymous submission #396 to ACM CCS 2023

Table 5: Signature-based packer detection is widely used in
the existing research work.

Usage Directly Indirectly
Signature-based detectors

(e.g., PEiD)
Labels from anti-virus engines

(e.g., VirusTotal) Unpacker

Preprocessing Dataset [38], [54], [65], [66],
[67], [68] - [25], [26]

Creating Ground-Truth Dataset [69], [70], [38], [71],
[4], [72], [73]

[72], [69], [74], [75],
[19], [76] -

Classifying Packers [6], [4], [77], [78],
[79], [80] [81], [5] -

Comparison [17] - -

A THE USAGE OF SIGNATURE-BASED
PACKER DETECTION IN RESEARCH
PAPERS

We systematically surveyed the papers published in 12 major cyber
security conference venues (IEEE Security & Privacy, USENIX Secu-
rity, ACM CCS, NDSS, USENIX ATC, ACSAC, ESORICS, ASIACCS,
DSN, RAID, DIMVA, and CODASPY) over the past 16 years. As
shown in Table 5, we find out that 24 papers are directly adopt-
ing signature-based detection in the experiments. Most works use
signature-based detectors such as PEiD. There are two works [6, 72]
also combine multiple detectors to identify packed programs. For
example, Aghakhani et al. [6] adopt a hybrid packer detection ap-
proach, which combines the detection results from multiple anti-
virus engines, deep packer inspector [4], and signature-based de-
tectors.

From Table 5 we can find that most works adopt signature-based
detection in the process of preprocessing the dataset or construct-
ing the ground-truth dataset. There are eight papers that apply
signature-based detectors to classify packers. For example, Ugarte-
Pedrero et al.’s SoK paper [4] adopts three detectors (i.e., PEiD,
Sigbuster, and F-Prot) to classify the off-the-shelf packers and cus-
tom packers. However, the accuracy of the existing human-written
rules is unsatisfactory. Inappropriate rules will greatly influence
the correctness of the conclusion.

Furthermore, some tools (e.g., unpacker) may also influence the
experiment results due to indirectly relying on YARA rules. Two
recent papers [25, 26] indirectly use the signature-based detectors:
they adopt unipacker [27] to unpack the samples of their datasets,
while unipacker detects packed programs based on YARA rules.

B ERROR-PRONE HUMAN-WRITTEN RULES
The reasons for error-prone human-written rules can be divided
into the following three categories.
Insignificant Features. If the rules are created from insignificant
features, they will suffer from a high false positive rate. An exam-
ple of Armadillo v171 detection rule adopted by PEiD is shown in
Fig. 11. This rule is developed to match the entry point instructions
of Armadillo-packed programs. However, the expected matched
instructions are also used by compiler-generated programs. For ex-
ample, by applying this rule Armadillov171 in our NPD1 dataset,
we find that 56 non-packed samples are mistakenly identified as
packed by Armadillo.
Rules with Long Length. To reduce the false positive rate of rules,
the analysts prefer to develop the rules with a long length. But it
usually causes the rules susceptible to control flow obfuscations.
An example of Nrv2x detection rules adopted in x64dbg YARA

rule Armadillov171 {
meta:

author="malware-lu"
strings:

$a0 = {55 8B EC 6A FF 68 ?? ?? ?? ?? 68 ?? ?? ?? ?? 64 A1}
condition:

$a0 at pe.entry_point
}

55 push ebp
8B EC mov ebp, esp
6A FF push -1
68 ?? ?? ?? ?? push ??
68 ?? ?? ?? ?? push ??
64 A1 ?? ?? ?? ?? mov eax, dword ptr fs:[??]

Disassembly

YARA Rules for Detecting Armadillo v171

Possible Matched Instructions

Figure 11: Human-written rules to detect Armadillo packers.

21 control transfer instructions

8A 06 mov al, byte ptr [esi]
46 inc esi
88 07 mov byte ptr [edi], al
47 inc edi
01 DB add ebx, ebx
75 07 jne 0x11
8B 1E mov ebx, dword ptr [esi]
83 EE FC sub esi, -4
11 DB adc ebx, ebx
72 ED jb 0
B8 01 00 00 00 mov eax, 1
01 DB add ebx, ebx
75 07 jne 0x23
8B 1E mov ebx, dword ptr [esi]
83 EE FC sub esi, -4
11 DB adc ebx, ebx
11 C0 adc eax, eax

...
E2 D9 loop 0xc4

$a0 =
{ 8A 06 46 88 07 47 01 DB 75 07 8B 1E 83 EE
FC 11 DB 72 ED B8 01 00 00 00 01 DB 75 07
8B 1E 83 EE FC 11 DB 11 C0 01 DB 73 EF 75
09 8B 1E 83 EE FC 11 DB 73 E4 31 C9 83 E8
03 72 0D C1 E0 08 8A 06 46 83 F0 FF 74 74
89 C5 01 DB 75 07 8B 1E 83 EE FC 11 DB 11
C9 01 DB 75 07 8B 1E 83 EE FC 11 DB 11 C9
75 20 41 01 DB 75 07 8B 1E 83 EE FC 11 DB
11 C9 01 DB 73 EF 75 09 8B 1E 83 EE FC 11
DB 73 E4 83 C1 02 81 FD 00 F3 FF FF 83 D1
01 8D 14 2F 83 FD FC 76 0F 8A 02 42 88 07
47 49 75 F7 E9 63 FF FF FF 90 8B 02 83 C2
04 89 07 83 C7 04 83 E9 04 77 F1 01 CF E9
4C FF FF FF 5E 89 F7 B9 ?? ?? 00 00 8A 07
47 2C E8 3C 01 77 F7 80 3F ?? 75 F2 8B 07
8A 5F 04 66 C1 E8 08 C1 C0 10 86 C4 29 F8
80 EB E8 01 F0 89 07 83 C7 05 ?? D8 E2 D9 }

Disassembly

YARA rules for detecting Nrv2x Disassembled instructions

Figure 12: An illustration of a long YARA rule for detecting
Nrv2x decompression algorithm.

database[50] is shown in Fig. 12. The Nrv2x is a decompression
algorithm widely adopted by packers such as UPX. From the dis-
assembled results shown in Fig. 12 we can find that the expected
matched instructions contain 21 jump instructions. If the packer
split the basic blocks of the Nrv2x algorithm, this rule can be easily
evaded.

C CASE STUDY I: A CUSTOMIZED UPX
SAMPLE FROM APT 29

This section discusses the evasion techniques of customized packers
to bypass existing human-written rules. We use an APT 29 packed
sample (SHA256: 55ba0c04d488903e07f0747407ed56319f0d9aac113c
7f9c62287442f1f78c45) from our detected custom UPX-packed sam-
ples. This sample uses normal section names such as “.text” in-
stead of the suspicious section name “.UPX”. It also hides any sus-
picious strings of packers to bypass the rules created from textual
features. By manually inspecting the samples, we observe that
this sample hides the packed data and the unpacking routine in
the “.rdata” section. Different from the standard UPX-packed
programs, the entry point instructions of this sample are the tram-
poline code used to jump to the real UPX unpacking routine in
the “.rdata” section. It can easily bypass the rules created from
the entry point instructions. However, this sample uses the same
unpacking routine as in standard UPX without any obfuscations.

15

Anonymous submission #396 to ACM CCS 2023

At the runtime, this sample will place unpacked instructions in the
“.data” section, which is an empty section ranging from 0x401000
to 0x418000. Furthermore, according to the DIE’s report, the en-
tropy of this sample is less than 1. This sample uses bytes padding
technique to reduce the entropy of “.text” section to 0.03. Only
the entropy of the “.rdata” section is greater than 7. This sam-
ple can bypass the anti-virus engines that measure the entropy of
executable files.

D CASE STUDY II: AN EXAMPLE OF
LOW-ENTROPY SAMPLE PACKED BY
NSPACK

From the low entropy dataset provided by [17], we find two low
entropy packed samples are protected byNsPack.We use the sample
(SHA256:aac73c9374127b9045724ba9a843314e2dc5a1edd25e11d1ae
450cba13d3e30b) as the example. Our generated rules identify that
this sample is packed with NsPack. However, the entropy of this
sample is 3.9, which is lower than the entropy of packed programs
(usually higher than 7). Compared to the programs packed by stan-
dard NsPack 2.4, we observe that the low entropy sample adopts
the same unpacking routines as the standard NsPack packer. The
comparison result based on BinDiff [82] is shown in Fig. 13. We can
find that nearly 99% of recognized functions are similar. The only
difference is introduced by two basic blocks in the “start” (i.e., the
entry point of packed programs) function which is the first blue
colored lines in Fig. 13. After manually examining the sample, we
find that this sample adopts a large null segment to decrease the
entropy.

E CASE STUDY III: A CAMOUFLAGED
CUSTOM PACKERS

This section discusses the evasion technique of customized pack-
ers to mislead existing standard packer detection rules.We present a
packed sample (SHA256: 001350bb9e5cacf470bc075a7433252d59c1e3
516c7804959f9688a790a9abdf6) camouflaged as packed by standard
UPX from our WD1 dataset. The detection results of VirusTotal
and DIE reveal that this sample is packed by UPX 3.10. We find
out that the detection rules of DIE resolve the meta-information of
the sample as the standard UPX. However, as shown on the official
website of UPX 4, the UPX 3.10 version is nonexistent. This sample
also cannot be unpacked by the “upx -d” command. After man-
ually inspecting the samples, we observe that this sample uses a
custom decoding algorithm at the first layer unpacking routines.
The comparison result based on BinDiff [82] is shown in Fig. 14.
We can discover that the similarity score between camouflaged
samples and the standard UPX-packed program is only 18%. Only
at the runtime, this sample will unpack and execute the real UPX
unpacking routines. We discover 3,425 similar samples from our
WD1 dataset. These camouflaged samples will easily mislead the
existing standard packer detection rules and analysts. If replacing
the unpacked standard unpacking routines with custom ones, these
custom packers can effectively impede the analysts.

F INACCESSIBLE PACKERS
Malware authors may use custom packers to evade detection; they
also adopt old packers that are no longer available in the market.
For example, malware collected in recent years still uses many old
packers (e.g., Diminisher) designed over 20 years ago [6]. In this
scenario, we cannot synthesize packed programs from inaccessible
packers. Fortunately, close malware variants within the same family
are very likely to reuse the same packers [83]. We can manually
collect the packed programs that are potentially generated by the
same packer. Although we cannot traverse all configurations of
inaccessible packers, we can still find similar unpacking routines
when given sufficient same-packer protected samples.

When generating rules from the inaccessible packer protected
programs, the workflow of PackGenome is similar to the original
process shown in Fig. 4. To circumvent potential anti-instrumentation
techniques used in packed programs, we integrate our Pintool with
the anti-evasion framework ARANCINO [8]. We first preprocess
packed programs, record the “written-then-executed” instructions
at the first unpacking layer, and discover unpacking routines. Then,
we extract packer-specific genes by collecting similar instructions
from reused unpacking routines. During the rule generation pro-
cess, PackGenome will evaluate the accuracy of generated rules. If
the generated rules reveal high false negatives, we need to collect
additional packed programs as input samples and reproduce rules.
The reason is that the manually collected packed programs may
contain completely different unpacking routines, which will make
PackGenome cannot find similar instructions.

To evaluate the performance of PackGenome on generating rules
for detecting inaccessible packer protected programs, we collect
2,392 programs from Tuts4you [84] and peer work [85] (LPD2). We
randomly select 15 packed programs protected by five inaccessible
packers, and generate eight rules in total. Then, we apply generated
rules, human-written rules, AutoYara, and DIE to the dataset LPD2.
As shown in Table 6, our rules have a small false negative rate.

4https://github.com/upx/upx/blob/devel/NEWS
16

Anonymous submission #396 to ACM CCS 2023

Figure 13: BinDiff comparison between a low entropy sample and a program packed by standard NsPack 2.4.

Figure 14: BinDiff comparison between a Standard UPX-packed sample and a program camouflaged as packed by standard
UPX.

Table 6: The experiment results of applying our generated rules, human-written rules, AutoYara, and DIE to dataset LPD2.
“Obfs” reports the obfuscation adopted by the unpacking routines. “GR” reports the number of the generated rules.

Packers # of Vers Configurations Obfs 1 Our Approach Human-Written Rules AutoYara[21] Detect It Easy [16]
Relate Total GR FPR [%] FNR [%] Time [s] FPR [%] FNR [%] Time [s] FPR [%] FNR [%] Time [s] FPR [%] FNR [%] Time [s]

NoeLite 1 - - N 5 0 0 0.1 1.77 2.65 1 30.1 62.8 0.1 0 1.85 23
BeRoEXEPacker 1 - - N 3 0 0 0.2 100 0 1.1 0 60.7 0.2 0 6.03 21
exe32pack 1 - - N 1 0 0 0.1 0 0 0.7 0 50.4 0.1 0 0 17
JDPack 2 - - N 1 0 0 0.1 98.4 98.4 0.8 30.7 72.4 0.1 0 0 19
packman 1 - - N 1 0 0 0.2 100 0 1.3 0 54.2 0.2 0 0 20

1 “N” means not obfuscated.

81 C0 41 00 00 00 add eax, 0x41
81 C3 41 00 00 00 add ebx, 0x41
81 C8 41 00 00 00 or eax, 0x41
81 CB 41 00 00 00 or ebx, 0x41
81 EB 41 00 00 00 sub ebx, 0x41
81 F3 41 00 00 00 xor ebx, 0x41
81 21 41 00 00 00 and dword ptr [ecx], 0x41

{
ICLASS : OR

···
PATTERN : 0x81 MOD[11] MOD=3 REG[001] RM[nnn] SIMMz()
}

{
ICLASS : ADD

···
PATTERN : 0x81 MOD[11] MOD=3 REG[000] RM[nnn] SIMMz()
}

11000000

11001000

11001011

11000011

Instructions share the same opcode

Intel XED Encoding Rules

Bit-Level Encoding

(Opcode)

(Opcode)

Figure 15: An illustration of instructions with different func-
tions but sharing the same opcode.

17

Anonymous submission #396 to ACM CCS 2023

Algorithm 1: Predicting Disassembly
Input: HSR Hexadecimal String Rules
Result: INL List of Misplace Matched Instructions

1 Function B2Opcode(HSR) := Converting HSR to the same
byte format as the opcode of XED rules.

2 Function B2Operand(HSR) := Transforming HSR to operand
based on the grammar of XED rules.

3 Function InsGen(rule) := Generating instructions from the
Intel XED rules.

4 𝑂𝑃𝐶 [𝑜𝑝𝑐𝑜𝑑𝑒] := The XED rules that satisfy opcode.
5 𝑂𝑃𝐸 [𝑜𝑝𝑒𝑟𝑎𝑛𝑑] := The XED rules that satisfy operand.
6 INL← {}
7 if the length of HSR > 15 then
8 return False
9 end

/* Type I Predicting from operand */

10 if B2Operand(HSR) ≠ {} then
11 for each code in B2Operand(HSR) do
12 INL← INL ∪ InsGen(𝑂𝑃𝐸[code])
13 end
14 end

/* Type II Predicting from both opcode and operand */

15 for each index i from the start of len to end do
16 sopcode := B2Opcode(HSR[:i])
17 if sopcode ≠ {} then
18 soperand := B2Operand(HSR[i:])
19 if soperand ≠ {} then
20 INL← INL ∪ InsGen(𝑂𝑃𝐶[sopcode],

𝑂𝑃𝐸[soperand])
21 end
22 end
23 end
24 return INL

18

	Abstract
	1 Introduction
	2 Background and Motivations
	2.1 Binary Packing
	2.2 Signature-based Packer Detection
	2.3 Challenges of Generating Packer Detection Rules

	3 Overview
	4 Packed Program Preprocessing
	5 Packer-specific Gene Extraction
	5.1 Recording the First Unpacking Layer Execution Trace
	5.2 Discovering Unpacking Routine Instructions
	5.3 Extracting Packer-specific Genes

	6 YARA Rule Generation
	6.1 Byte Selection
	6.2 Calculating Misplace Matching Probability
	6.3 Predicting Disassembly

	7 Evaluation
	7.1 Experimental Setup and Datasets
	7.2 Rule Generation of PackGenome
	7.3 New Findings of Packers
	7.4 Accuracy
	7.5 Efficiency
	7.6 Scalability
	7.7 Performance in the wild

	8 Related Work
	9 Discussion
	10 Conclusion
	References
	A The usage of signature-based packer detection in Research Papers
	B Error-Prone Human-written Rules
	C Case Study I: A Customized UPX Sample from APT 29
	D Case Study II: An example of low-entropy sample packed by NsPack
	E Case Study III: A Camouflaged Custom Packers
	F Inaccessible Packers

