
MalGuise: Generating Practical Adversarial Malware against
Learning-based Windows Malware Detection

Anonym

ABSTRACT

Given the widespread popularity and impressive performance of
learning-based malware detection in both academia and industry,
in this paper, we present a novel attack framework of MalGuise
for effectively and efficiently evaluating the security vulnerabili-
ties of existing learning-based Windows malware detection sys-
tems. Based on the newly proposed semantics-preserving transfor-
mation of call-based redividing that concurrently manipulates
both nodes and edges of the control-flow graph (CFG) representa-
tion, MalGuise employs a Monte Carlo tree search (MCTS) based
optimization to search for an optimized sequence of call-based
redividing transformations that would be performed in the input
Windows malware and then reconstructs a successful adversarial
malware file under the constraints of Windows executable format,
thereby preserving the same semantics as the original inputted mal-
ware. We systematically evaluate our proposed attack of MalGuise
against three state-of-the-art learning-based Windows malware
detection systems under the strict black-box setting. Evaluation re-
sults demonstrate that MalGuise achieves a high attack success rate
of mostly over 97% and more than 90% of them generate realistic
adversarial malware that keeps the same semantics as the original
one. Moreover, to understand the real threats of adversarial attacks
against real-world anti-viruses, we additionally demonstrate the
attack effectiveness of MalGuise on seven commonly used commer-
cial anti-virus products and particularly observe that the highest
attack success rate among them is up to 74.97%.

1 INTRODUCTION

With the sustainable development of information technology, espe-
cially computer systems, malware (i.e., short formalicious software)
has been constantly developed and evolved as one of the most se-
curity threats that could perform malicious activities on computer
systems, including stealing sensitive information, demanding from
a large ransom, or even disrupting national critical infrastructures,
just to name a few. Meanwhile, as the most widely used operat-
ing system for both individuals and organizations in the world, the
Windows family of operating systems (i.e., Windows) has inevitably
become the most preferred target operating system of malware for
potential attackers, which is generally termed as Windows malware
in this paper. According to the security statistics of AV-TEST [9],
in the first three quarters of 2022, it is reported that approximately
59.58 million new Windows malware was discovered and these
accounted for over 95% of all malware samples that were newly
discovered during the time period [8].

To defend against the ever-increasing number of security threats
caused by the ever-evolving Windows malware, considerable re-
search efforts with the latest technological advances have been

ACM CCS 2023, Nov. 26–30, 2023, Copenhagen, Denmark
2023. ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

made to identify and mitigate Windows malware [16, 47, 48, 61, 76],
namely Windows malware detection. Basically, Windows malware
detection can trace its history back to signature-based malware
detection in the 1990s, which mainly blacklists suspicious malware
based on a frequently updated database of known malware signa-
tures that are previously collected and analyzed. It is apparent that
signature-based malware detection cannot detect new or previously
unknown malware. In the past two decades, aiming at increasing
the generalization in detecting newly emerging and previously
unknown malware, a variety of conventional machine learning
(ML) and deep learning (DL) models are continuously explored
and employed for Windows malware detection, which is called the
learning-based Windows malware detection in this paper. Due to the
high learning capacities and capabilities of ML/DL models, learning-
based Windows malware detection is demonstrated to generalize to
detect other newly emerging and even zero-day malware, thereby
becoming a critical building block of current mainstream anti-virus
products in the competitive market [36, 53].

However, recent advanced studies have demonstrated that ML/DL
models are highly and inherently vulnerable to adversarial at-
tacks [46], by which the adversary maliciously creates adversar-
ial examples as the input to trigger the target ML/DL model to
malfunction, e.g., make incorrect predictions or decisions. Since
being initially proposed in 2015 [26], adversarial attacks have been
successfully used to explore security threats in the domain of com-
puter vision like autonomous driving [63], and further have been
extended to many other domains, such as audio recognition, natu-
ral language processing, and graph analysis [12, 74]. Furthermore,
considering the massive and advanced usage of learning-based Win-
dows malware detection in both academia and industry [36, 53, 76],
one natural research question that arises is, is it feasible to generate
practical adversarial malware against existing learning-based Win-
dows malware detection for evaluating its security vulnerabilities?

To answer this research question, in this paper, we attempt to
explore an adversarial attack under the realistic black-box setting
for effectively and efficiently generating practical adversarial mal-
ware. Towards this, we identify two key challenges (i.e., C#1 and
C#2) that need to be addressed as follows.
• C#1: How to generate practical adversarial malware that can

guarantee the same semantics as the original one as well as can-
not be easily noticed by defenders? Existing adversarial attacks
mainly consist of ① adding irrelevant API calls [4, 17, 29, 72], ②

partially or globally manipulating raw bytes [6, 24, 39, 40, 50, 66],
and ③ manipulating the control-flow graph (CFG) representation
of malware by injecting semantic nops [78]. We argue that the
first two adversarial attacks (i.e., ① and ②) are either impractical
to generate adversarial features rather than practical adversarial
malware, or strictly limited against a specific malware detection
like MalConv. Although demonstrating better scalability against
other malware detection based on CFG, the third adversarial
attack (i.e., ③) only considers a coarse-grained transformation

https://doi.org/XXXXXXX.XXXXXXX

ACM CCS 2023, Nov. 26–30, 2023, Copenhagen, Denmark Anonym, et al.

that manipulates the nodes of CFG, which is quite noticeable to
be mitigated by defenders. Therefore, to address C#1, our idea is
to devise a more fine-grained and less noticeable transformation
towards the CFG representation that not only manipulates the
nodes (i.e., instruction blocks) but also its edges, i.e., the control-
flow relationships between two instruction blocks.
• C#2: How to efficiently search in the large and discrete space of

Windows malware under the strict black-box setting such that
the optimized adversarial malware can bypass learning-based
Windows malware detection? We investigate the state-of-the-art
black-box adversarial attacks against Windows malware detec-
tion, typically including gradient estimations with surrogate
models [4, 39, 72], evolutionary algorithms [17, 50], and rein-
forcement learning [6, 78]. Apparently, those adversarial attacks
based on gradient estimations rely heavily on prior information
(e.g., training data, model architecture) about the target systems.
On the other hand, adversarial attacks based on evolutionary
algorithms and reinforcement learning are computationally ex-
pensive in the vast and discrete space of malware. Therefore, we
address C#2 by employing a Monte Carlo tree search (MCTS)
based optimization to effectively and efficiently search the op-
timized adversarial malware that can successfully bypass the
target malware detection.
Overall, in this paper, we propose a novel and practical frame-

work of adversarial attacks against learning-based Windows mal-
ware detection under the black-box setting, namely MalGuise. As
depicted in Fig. 2, MalGuise mainly consists of three backbone
phases, i.e., 1) adversarial transformation preparation, 2) MCTS
guided searching, and 3) adversarial malware reconstruction. Specif-
ically, MalGuise first represents the input Windows malware as
CFG with the disassembled assembly files and presents a novel
semantics-preserving transformation of call-based redividing,
which lays the base for manipulating both nodes and edges of the
CFG representation. Then, we employ an MCTS algorithm that
can effectively and efficiently guide MalGuise to search for an
optimized sequence of call-based redividing transformations
among the vast and discrete space of malware. Finally, based on the
optimized sequence of transformations, MalGuise reconstructs a
successful adversarial malware under the constraints of Windows
executable format, which guarantees that its format, executabil-
ity, and maliciousness remain the same as the original Windows
malware inputted.

In order to demonstrate the attack effectiveness of the proposed
adversarial attack framework of MalGuise, we systematically eval-
uate the security vulnerabilities of three representative learning-
based Windows malware detection systems (i.e., MalGraph, Magic,
and MalConv) compared with two state-of-the-art baseline adver-
sarial attacks on the wild Windows dataset that contains hundreds
of thousands of malware and goodware. The evaluation results show
that MalGuise is agnostic to the target learning-based Windows
malware detection systems and achieve a high attack success rate
of mostly over 97%. Meanwhile, we automatically and empirically
verify at scale that MalGuise could generate realistic adversarial
malware files with a probability of more than 90%, whereas prior
adversarial attacks can only generate with a probability of less
than 50% or even fail to generate realistic adversarial malware files.

Furthermore, to understand the real security threats of adversar-
ial attacks against real-world anti-virus products, we additionally
demonstrate the attack effectiveness of MalGuise on seven com-
monly used commercial anti-virus products and particularly ob-
serve that the attack success rate among them reaches a range of
5.64% to 74.97%. To summarize, we highlight our key contributions
as follows.

• To understand and inspect the security vulnerabilities of
existing learning-based Windows malware detection and
advanced commercial anti-virus tools in real world, we pro-
pose a general and practical adversarial attack framework
of MalGuise under the strict black-box settings.
• To the best of our knowledge, MalGuise is the first to apply

a more fine-grained manipulation towards the CFG repre-
sentation of Windows executable, which not only changes
the nodes of CFG (i.e., instruction blocks) but also the edges
(i.e., the control-flow relationship between two instruction
blocks).
• Evaluations demonstrate that MalGuise could not only suc-

cessfully bypass state-of-the-art learning-based Windows
malware detection with an attack success rate of mostly
over 97%, but also can bypass seven commercial anti-virus
products with an attack success rate in a range of 5.64% to
74.97%.

2 PRELIMINARIES & THREAT MODEL

In this section, we introduce the necessary preliminaries on learning-
based malware detection and our threat model.

2.1 Preliminaries on Learning-based Malware

Detection Systems

The purpose of learning-based malware detection is to discriminate
whether the suspicious executable is malicious or not. As shown in
Fig. 1, we give an overview framework of learning-based malware
detection systems.

First, as ML/DL models most only accept numeric vector data as
inputs, the training samples and testing samples of executables are
pre-processed by feature engineering before being inputted into
ML/DL models. Formally, feature engineering can be formulated as
𝜙 : Z → X ⊆ R𝑛 , which actually produces a 𝑛-dimension feature
vector 𝑥 ∈ R𝑛 in the feature-space X (i.e., 𝑥 ∈ X) for a given exe-
cutable 𝑧 in the problem-space Z, i.e., 𝑧 ∈ Z. Then, based on all the
training samples, the ML/DL model is employed to learn a classi-
fication boundary between malware and goodware via training a
binary classifier as the learning-based malware detection system
𝑓 : Z → Y. That is, given an executable 𝑧 ∈ Z, 𝑓 can predicts
a corresponding label of 𝑦 in the label-space Y (i.e., 𝑦 ∈ Y), such
that 𝑦 = 𝑓 (𝑧) ∈ {0, 1}, in which 𝑦 = 0 denotes goodware while
𝑦 = 1 denotes malware. Additionally, for simplifying the notation
in learning-based malware detection [43, 48], we denote the mal-
ware detection system that can return the malicious probability as
𝑔 : Z → R, in which 𝑔(𝑧) denotes the predicted malicious probabil-
ity for the given 𝑧 and the opposite benign probability is naturally
inferred as 1 − 𝑔(𝑧).

MalGuise: Generating Practical Adversarial Malware against Learning-based Windows Malware Detection ACM CCS 2023, Nov. 26–30, 2023, Copenhagen, Denmark

Training Samples

with Labels

Testing Sample(s)

Feature

Engineering

x = ϕ(z)

Model

Training

Model

Prediction

𝑧 ∈ 𝒵
𝑦 ∈ 𝒴

Learning-based Malware Detection

System: y = f z = g(ϕ z)

malware

y = 1

goodware

y = 0

Trained

Model

x ∈ 𝒳
y ∈ 𝒴

𝑦 ∈ 𝒴

𝑧 ∈ 𝒵
𝑥 ∈ 𝒳

𝑦 = 𝑓 𝑧

Figure 1: Overview of learning-based malware detection.

2.2 Threat Model

Following the most widely used framework of modeling threats in
adversarial machine learning [12, 58], we report our threat model in
terms of the adversary’s goal, knowledge, and capability as follows.

Adversary’s Goal. In this paper, we focus on evasion attacks,
which can be generally categorized into un-targeted attacks and
targeted attacks in multi-class settings like image recognition. In
particular, targeted attacks mean to cause an incorrect classification
towards a specified class, while un-targeted attacks mean to cause
an incorrect classification without any specificity. However, in
the context of our attack scenario that targets malware detection
systems (i.e., binary classification), the differences between un-
targeted and targeted attacks are lost [64]. This is because, for the
adversary that aims to compromise malware detection systems,
it is hugely profitable to misclassify malware as goodware, but
not vice versa. Therefore, the primary goal of the adversary is to
generate a practical adversarial malware file 𝑧𝑎𝑑𝑣 from a legitimate
malware file 𝑧 ∈ Z (i.e., 𝑓 (𝑧) = 1) with minimal efforts, such that
𝑧𝑎𝑑𝑣 ∈ Z can not only be misclassified by 𝑓 (i.e., 𝑓 (𝑧𝑎𝑑𝑣) = 0) but
also preserve the same semantics (including format, executability,
and maliciousness) as 𝑧 [48].

Adversary’s Knowledge and Capability. We start with an
adversary who intends to perform the classic zero-knowledge black-
box attack [51, 58] against the target malware detection system.
This indicates that the adversary has no prior information on the
target system about the training data, the extracted feature set,
the employed learning algorithm with parameters, and the model
architecture along with corresponding weights. However, it should
be clarified that the zero-knowledge black-box attack still has some
minimal information on the target system, including what specific
task is the target system employed to perform (e.g., static or dynamic
malware detection), which kind of feature type is employed to
represent the input software file (e.g., image, sequence or graph),
and the querying feedback from the target system. To be specific,
in our attack scenario against learning-based Windows malware
detection systems, we restrict the adversary to only knowing that
the feature type employed by our target system is mainly static
control-flow information like CFG. Furthermore, the adversary can
obtain the prediction label 𝑓 (𝑧) along with or without the prediction
probability 𝑔(𝜙 (𝑧)) by inputting an arbitrary executable 𝑧 into the
target system.

Considering that the generated adversarial malware file must
preserve the same semantics as the original malware, we thus resort

to the problem-space attack [58] that attempts to apply semantics-
preserving transformations over the original input malware so that
the transformed malware is misclassified as goodware. That means
the adversary has the capability of manipulating the input exe-
cutable without destroying its semantics, including format, exe-
cutability, and maliciousness.

3 DESIGN OF MALGUISE

3.1 Problem Formulation

In this paper, the primary goal of the adversary is to generate a prac-
tical adversarial malware file 𝑧𝑎𝑑𝑣 ∈ Z from a legitimate malware
𝑧 ∈ Z, such that the generated 𝑧𝑎𝑑𝑣 not only being misclassified
as goodware but also preserves the same semantics as the original
malware 𝑧. To preserve that 𝑧𝑎𝑑𝑣 has the same semantics as 𝑧, we
devise semantics-preserving transformations in the problem space
to transform the original malware step by step until a successful
adversarial malware file is generated. Recall that we consider the
classic zero-knowledge black-box attack against the learning-based
malware detection system, in which the adversary can obtain the
predicted label with or without the malicious probability. Thus,
as formulated in Eq. (1), we start to define the first black-box at-
tack scenario with the malicious probability 𝑔(·) by maximizing
the difference of the predicted malicious probabilities between the
original malware 𝑧 and the generated adversarial malware 𝑧𝑎𝑑𝑣 ,
meaning to reduce the malicious probability that 𝑧𝑎𝑑𝑣 is predicted
to be malicious as much as possible.

argmax
T

𝑔(𝑧) − 𝑔(𝑧𝑎𝑑𝑣) ▶ when knowing 𝑓 (·) with 𝑔(·) (1)

argmin
T

𝑓 (𝑧𝑎𝑑𝑣) ▶ or knowing 𝑓 (·)without𝑔(·) (2)

s. t.: 𝑓 (𝑧) = 1 (3)
𝑓 (𝑧𝑎𝑑𝑣) = 0 (4)
𝑧𝑎𝑑𝑣 = T(𝑧) ∈ Z (5)
T = 𝑇1 ◦𝑇2 ◦ · · · ◦𝑇𝑛 ∈ T (6)

in which 𝑇 ∈ T denotes one of atomic transformations that can
transform one executable into another semantics-preserving exe-
cutable; T = 𝑇1 ◦𝑇2 ◦ · · · ◦𝑇𝑛 denotes a finite and ordered sequence
of 𝑛 transformations that 𝑧 can be step-by-step transformed into
an adversarial malware, i.e., 𝑧𝑎𝑑𝑣 = T(𝑧) ∈ Z.

Similarly, we further extend our attack scenario to a strict black-
box setting where the adversary can only obtain the predicted label
𝑓 (·) without the predicted probabilities, and further define it in
Eq. (2) by simply minimizing the predicted label of 𝑧𝑎𝑑𝑣 to 0 since
0 means it is goodware for the target malware detection system 𝑓 .

3.2 Overview of MalGuise Framework

We present the overview framework of MalGuise in Fig. 1, which
mainly consists of three backbone phases, i.e., adversarial trans-
formation preparation, MCTS guided searching, and adversarial
malware reconstruction. In general, building on the CFG represen-
tation of Windows malware, we first propose a novel and practical
semantics-preserving transformation of call-based redividing,
which prepares the groundwork for manipulate both nodes and
edges of CFG in more fine-grained fashion. Then, we use the MCTS
algorithm to search for an optimized sequence of transformations

ACM CCS 2023, Nov. 26–30, 2023, Copenhagen, Denmark Anonym, et al.

that could be applied to transform the original CFG into the cor-
responding adversarial CFG representation under the black-box
setting. Finally, abiding by the constraints of Windows executable
specifications, we further reconstruct the adversarial CFG repre-
sentation into a successful adversarial malware file. As below, we
elaborate on each of three backbone phases in the following sub-
sections of § 3.3, § 3.4, and § 3.5, respectively.

Malware Control-flow
Graph (CFG)

Assembly
Code

Semantics-preserving Transformations

a) Manipulating Edges of CFG
- Call-Instruction-based Redividing

c) Manipulating Nodes of CFG
- Semantic NOPs Injecting

Selection

- Selection
- Expansion
- Simulation
- Backpropagation

① Adversarial Transformation
Preparation

MCTS-Guided Heuristic
Practical Searching

Optimized Control-
flow Graph

③ Adversarial Malware
Reconstruction

Assembly
Code

Adversarial
Malware

② MCTS Guided Searching

Expansion

Simulation

Backpropagation

Figure 2: Overview of MalGuise, consisting of three back-

bone phases: adversarial transformation preparation, MCTS

guided searching, and adversarial malware reconstruction.

3.3 Adversarial Transformation Preparation

3.3.1 Representing the Windows malware as CFG. To prepare ad-
versarial transformations that manipulate the given malware file
while preserving its semantics, we start by first representing the
malware file as CFG, in which each node denotes a basic block and
each edge denotes a control-flow path between two basic blocks
during the execution. Specifically, one basic block consists of a
maximum sequence of assembly instructions without branching
instructions (e.g., “jmp␣[address]”) except for the last instruction,
and each assembly instruction has one opcode and a certain number
of operands. Actually, the main reason for us to represent Windows
malware as CFG is two folds. First, CFG encapsulates the intrinsic
control flows during the execution of the given Windows malware,
which actually contains rich semantic and structural information
of assembly instructions. Therefore, if we can manipulate both
nodes and edges of the CFG representation, we can change both
semantics and structural information to further generate possible
adversarial malware in a more fine-grained fashion, thereby making
the generated adversarial malware less easy to be noticed. Second,
the representation of CFG actually has been widely employed in
a variety of applications of software analysis, and CFG-based mal-
ware detection is extensively proven to be technically advanced
and highly effective in both industry and academia [47, 75]. There-
fore, if we could successfully attack these advanced CFG-based
malware detection systems as representative cases, it could clearly
demonstrate the maximum effectiveness of our proposed MalGuise.

3.3.2 Semantic-preserving Transformations. However, if we trans-
form one executable into another executable by directly manipulat-
ing its CFG, it is extremely easy to cause various unexpected soft-
ware errors like addressing or processing errors, so that the trans-
formed executable cannot be executed properly or even crashes

immediately. Therefore, in order to guarantee the transformed exe-
cutable has the same semantics as the original one, the proposed
semantics-preserving transformation should satisfy two principles:
1) one the one hand, the proposed transformation should be able to
manipulate not only the instruction information of the basic block
itself (i.e., nodes), but also its structural information of control-
flow paths (i.e., edges) in CFG; 2) on the other hand, the proposed
transformation must not change the executing logic of the given
executable, thereby ensuring the transformed executable can be ex-
ecuted properly with the same behaviors as the original executable.

To account for the two aforementioned principles, we propose a
novel semantics-preserving transformation for the CFG representa-
tion of executables, namely call-based redividing, which mainly
redivides one of the basic blocks that contain at least one assem-
bly instruction with “call” (e.g., “call␣subroutine”) for concurrently
manipulating both instruction information of the basic block itself
and structural information of control-flow path in the correspond-
ing CFG. To be specific, for one given executable, the proposed
call-based redividing first annotates all available basic blocks
with “call” instruction(s), which serve as the base for subsequent
transformations. Then, supposing there is a basic block v with “call”
instruction(s), call-based redividing considers the instruction
where the “call” operator is located as the dividing line, and at-
tempts to redivide the original basic block 𝑣 into a combination of
three new and consecutive basic blocks (i.e., the fore-basic-block
v𝑓 𝑜𝑟𝑒 , the post-basic-block v𝑝𝑜𝑠𝑡 , and the mid-basic-block v𝑚𝑖𝑑).

To be specific, by call-based redividing, v𝑓 𝑜𝑟𝑒 mainly con-
tains a sequence of consecutive instructions before the “call” instruc-
tion and is additionally appended with an added “jmp” instruction
that can jump to the basic block of v𝑚𝑖𝑑 . v𝑝𝑜𝑠𝑡 contains a sequence
of consecutive instructions after the “call” instruction without any
changes. v𝑚𝑖𝑑 initially starts with the specified “call” instruction
and ends with a newly added “jmp” instruction that jumps to the
basic block of v𝑝𝑜𝑠𝑡 . Finally, to avoid the basic block of v𝑚𝑖𝑑 being
easily noticed by defenders due to having only two instructions,
call-based redividing further attempt to enrich the assembly in-
structions in v𝑚𝑖𝑑 by injecting semantic nops [19] between the “call”
instruction and the “jmp” instruction. In particular, semantic nops
denotes a sequence of consecutive instructions that do not have
any effect on the memory and register during execution [19, 50].
Here, we specifically employ a context-free grammar developed
in [50] to generate diverse semantic nops to be injected.

As illustrated in Fig. 3, we first show one basic block of the
latest “LockBit 3.0” ransomware that has been the most active ran-
som gang during the third quarter of 2022 [49] as a representative
example in Fig. 3(a), and further highlight one of the “call′′ in-
structions in yellow , which is considered as the dividing line by
the call-based redividing transformation. After performing the
transformation, Fig. 3(b) shows the transformed composite of three
consecutive basic blocks, in which the ends of two basic blocks
(i.e., v𝑓 𝑜𝑟𝑒 and v𝑚𝑖𝑑) are two newly added jump instructions with
red highlighted, and those assembly instructions between the

“call” instruction and the jump instruction in v𝑚𝑖𝑑 are newly added
semantic nops in green.

MalGuise: Generating Practical Adversarial Malware against Learning-based Windows Malware Detection ACM CCS 2023, Nov. 26–30, 2023, Copenhagen, Denmark

.
push eax
jmp loc_42C000

lea eax, [ebp+var_1]
.
push eax
call sub_41B348
mov [ebp+var_2], eax
call sub_41B204
mov ebx, eax
.
lea esi, [esi+0F8h]

call sub_41B2F4
.
dec ah
inc ah
.
jmp loc_41B033

.
push eax
call sub_41B2F4
lea eax, [ebp+var_1]
.
push eax
call sub_41B348
mov [ebp+var_2], eax
call sub_41B204
mov ebx, eax
.
lea esi, [esi+0F8h]

v vfore

vpost

vmid

(a) A basic block in CFG

before transformations.

.
push eax
jmp loc_42C000

lea eax, [ebp+var_1]
.
push eax
call sub_41B348
mov [ebp+var_2], eax
call sub_41B204
mov ebx, eax
.
lea esi, [esi+0F8h]

call sub_41B2F4
.
dec ah
inc ah
.
jmp loc_41B033

.
push eax
call sub_41B2F4
lea eax, [ebp+var_1]
.
push eax
call sub_41B348
mov [ebp+var_2], eax
call sub_41B204
mov ebx, eax
.
lea esi, [esi+0F8h]

v vfore

vpost

vmid

(b) A composite of three basic blocks in CFG after

the call-based redividing transformation.

Figure 3: Illustration of call-based redividing transforma-

tion that semantics-preserving redivides one basic block in

the “LockBit 3.0” ransomware (i.e., Fig. 3(a)) into a compos-

ite of three consecutive basic blocks (i.e., Fig. 3(b)) without

interfering with all others.

3.4 MCTS Guided Searching

Recalling our adversarial attack formulated in § 3.1 and the trans-
formation of call-based redividing that is defined upon the CFG
representation (i.e., 𝜙 (𝑧)) of a given Windows malware (i.e., 𝑧) in
§ 3.3, we further decompose our adversarial attack into finding an
optimized sequence of transformations (i.e., T = 𝑇1◦𝑇2◦· · ·◦𝑇𝑁 ∈ T)
that could first consecutively transform the original CFG repre-
sentation 𝜙 (𝑧) into a successful adversarial CFG representation
T(𝜙 (𝑧)) under the black-box setting and then reconstruct the final
adversarial malware file 𝑧𝑎𝑑𝑣 = 𝜙−1 (T(𝜙 (𝑧))). Below, we focus on
describing how to find an optimized sequence of transformations T
under black-box settings in this subsection, and leave the introduc-
tion of the remaining adversarial malware reconstruction to the
next subsection of § 3.5.

In essence, equipped with the proposed transformation of call-
based redividing, the optimal solution we are solving here is an
optimized sequence of transformations T of length 𝑛, and each
transformation (i.e., 𝑇𝑖 (1 ≤ 𝑖 ≤ 𝑛) ∈ T) involves two decision-
making processes: 1) the first is to select one of all available call

instructions to be redivided, and it should be noted that every call

instruction can be repeatedly and infinitely selected in a recursive
manner; 2) the second is to determine proper semantic nops to be
injected, and these semantic nops can be generated infinitely by the
employed context-free grammar [50]. In short, the whole process
of optimizing a sequence of transformation T in MalGuise requires
exploring and optimizing in an infinite and discrete space under
black-box settings.

Motivated by the great success of Monte Carlo Tree Search
(MCTS) [23] in solving the long-standing challenging problem of
computer Go [23, 25, 65] and other difficult problems of optimiza-
tion and planning with little or no domain knowledge [14], we
propose an MCTS guided searching algorithm to explore and op-
timize a sequence of semantics-preserving transformations T in
the infinite and discrete space within limited computational budget
under black-box settings. To be specific, MCTS is a heuristic search-
ing method that incorporates the precision of tree search with the

generality of Monte Carlo random sampling to find the optimal solu-
tion for large-scale optimization and planning problems [14, 23, 57].
MCTS progressively builds and searches an asymmetric game tree,
in which each node in the game tree represents a state of CFG that
stores statistics of a reward value and the number of visits, and
each edge represents an action that transforms a parent state node
into the child state node.

Algorithm 1: MCTS Guided Searching Algorithm
Input :a given malware 𝑧, malware detection system 𝑓 with the

CFG representation 𝜙𝑐𝑓 𝑔 , max length 𝑁 , simulation
number 𝑆 , computation budget 𝐶 .

Output : the adversarial CFG representation 𝑥𝑎𝑑𝑣 .
1 begin

2 𝑥 ← 𝜙𝑐𝑓 𝑔 (𝑧) ▶ represent 𝑧 as CFG;
3 I

call
← GetCallInsts(𝑥) ▶ get all available call instructions;

4 𝑣← InitMCTSNode(𝑥, I
call
) ;

5 for 𝑖 ← 1 to 𝑁 do

6 for 𝑗 ← 1 to𝐶 do

7 𝑝 ← random(0, 1) ;
8 if 𝑝 < 0.5 then
9 𝑣𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ← Selection(𝑣) ;

10 else

11 𝑣𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ← Expansion(𝑣) ;
12 end

13 𝑟𝑒𝑤𝑎𝑟𝑑 ← Simulation(𝑣𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 , 𝑓 , 𝑆) ;
14 BackPropagation(𝑣𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 , 𝑟𝑒𝑤𝑎𝑟𝑑) ;
15 end

16 𝑣𝑛𝑜𝑑𝑒 ← ChildWithHighestReward(𝑣) ;
17 𝑣 ← 𝑣𝑛𝑜𝑑𝑒 ;
18 𝑥𝑎𝑑𝑣 ← 𝑣.𝑥 ;
19 if bypass(𝑓 , 𝑥𝑎𝑑𝑣) == 𝑇𝑟𝑢𝑒 then

20 return 𝑥𝑎𝑑𝑣

21 end

22 end

23 end

As shown in Algorithm 1, we detail the main procedure of
MCTS guided searching algorithm for finding an optimized se-
quence of transformations T that takes the graph representation
𝜙 (𝑧) as the input and outputs an adversarial graph representation
𝑥𝑎𝑑𝑣 = T(𝜙 (𝑧)). In the beginning, we obtain both the CFG repre-
sentation 𝑥 of the given malware 𝑧 and all corresponding available
instructions I

call
for initializing the root node of MCTS (line 2–4).

Meanwhile, we limit the maximum length of the optimized transfor-
mation sequence to 𝑁 (line 5–22) and limit the maximum number
of iterations of MCTS to𝐶 , i.e., computational budget (line 6–15). As
for the MCTS optimization process, we follow the four typical steps
(i.e., Selection, Expansion, Simulation, and Backpropagation)
in the MCTS-guided searching algorithm (line 7–14). It should be
noted, as the transformation of call-based redividing can be
performed unlimitedly, the game tree of MCTS can be unlimitedly
expanded downwards, i.e., Expansion. Therefore, we adaptively
force to select the most “promising” child node (i.e., Selection) in
the established game tree via a simple random sampling. After 𝐶
iterations of MCTS optimizations, we can thus obtain the child node
𝑣𝑛𝑜𝑑𝑒 with the largest reward value, and further judge whether the

ACM CCS 2023, Nov. 26–30, 2023, Copenhagen, Denmark Anonym, et al.

corresponding CFG representation 𝑥𝑎𝑑𝑣 of the child node could
bypass the target malware detection system 𝑓 (line 16–21). In par-
ticular, if 𝑥𝑎𝑑𝑣 cannot be bypassed, we continue to use 𝑣𝑛𝑜𝑑𝑒 as the
root node for the next round of MCTS until reaching the maximum
computation budget 𝐶 , otherwise return 𝑥𝑎𝑑𝑣 as the adversarial
CFG representation. For the sake of simplicity, we leave further
technical/implementation details of MCTS to Appendix A.

3.5 Malware Reconstruction

After determining an optimized sequence of call-based redividing
transformations with length 𝑁 (i.e., T = 𝑇1 ◦𝑇2 ◦ · · · ◦𝑇𝑁) and ob-
taining a corresponding adversarial CFG representation 𝑥𝑎𝑑𝑣 in
§ 3.4, we further reconstruct the original Windows malware 𝑧 into
the final adversarial Windows malware 𝑧𝑎𝑑𝑣 accordingly, namely
malware reconstruction. Generally, in order to adhere to the speci-
fications of Windows executables and avoid unexpected errors (e.g.,
addressing errors) that may arise during malware reconstruction,
we first add a new section to the original malware 𝑧 (in § 3.5.1)
and then apply the sequence of transformations T of length 𝑁 to
𝑧 with the newly added section (in § 3.5.2), resulting in the final
adversarial Windows malware 𝑧𝑎𝑑𝑣 .

3.5.1 Adding a new section. Firstly, to ensure that there is suffi-
cient and proper space for inserting all those instructions when
applying the optimized sequence of call-based redividing trans-
formations, we need to determine the size of the new section that
will be added to the original malware 𝑧. Assuming that the total
size of all those instructions in all V𝑚𝑖𝑑 from all their call-based
redividing transformations is Δ𝑛𝑒𝑤 , the size of the new section to
be added can be computed as Δ𝑛𝑒𝑤

𝑎𝑙𝑖𝑔𝑛
= RoundUp(Δ𝑛𝑒𝑤 , 𝑝𝑎𝑔𝑒_𝑠𝑖𝑧𝑒),

which guarantees that the size of the newly added section must
be a multiple of the architecture’s page size (i.e., 𝑝𝑎𝑔𝑒_𝑠𝑖𝑧𝑒) for
facilitating the executable to be loaded into the memory [56]. In
particular, the 𝑝𝑎𝑔𝑒_𝑠𝑖𝑧𝑒 for both Intel x86 and MIPS is 4096 bytes
and for Itanium is 8192 bytes. Accordingly, as we append the new
section right after the last section in the original executable, the
starting address 𝐴𝑛𝑒𝑤 of the new section is essentially the ending
address of the original last section, which can be computed from
the header information of the original executable. After both the
size Δ

𝑎𝑙𝑖𝑔𝑛
𝑛𝑒𝑤 and the address 𝐴𝑛𝑒𝑤 of the newly added section are

determined, we take further actions according to the specifications
of Windows executables to achieve the purpose of adding a new
section to the original malware. Examples of all such subsequent
actions include: i) modifying both “number of sections” and “size
of image” in PE Header; ii) adding a new entry in the Section Table
with both size and address of the newly added section, etc. More
details about how to add a new section to the original malware can
be found in Appendix B.1 with Algorithm 4.

3.5.2 Applying transformations to the malware. Equipped with the
newly added section in the original malware 𝑧, we further ap-
ply the optimized sequence of transformations of length 𝑁 (i.e.,
T = {𝑇1,𝑇2, ...,𝑇𝑁 }) iteratively. To be specific, each transformation
can be represented as 𝑇𝑘 = {Icall

𝑘
, 𝐴call

𝑘
, I
𝑠𝑒𝑚𝑛𝑜𝑝𝑠

𝑘
}, 𝑘 = 1, 2, · · ·𝑁 , in

which Icall
𝑘

and 𝐴call

𝑘
denotes the instruction and address of the se-

lected “call” instruction by the 𝑘-th call-based redividing trans-
formation, and I𝑠𝑒𝑚𝑛𝑜𝑝𝑠

𝑘
denotes the corresponding semantic nops

to be injected. To avoid unexpected errors that might be caused
by applying those transformations, for each transformation 𝑇𝑘 , we
first replace the selected call instruction of I𝑐𝑎𝑙𝑙

𝑘
with a new jmp

instruction (i.e., “jmp␣[𝐴𝑛𝑒𝑤
𝑘
]”), which transfers the control-flow

to a new address for the 𝑘-th transformation in the new section,
i.e., 𝐴𝑛𝑒𝑤

𝑘
. Subsequently, in the address 𝐴𝑛𝑒𝑤

𝑘
of the newly added

section, we deposit I𝑐𝑎𝑙𝑙
𝑘

and I𝑠𝑒𝑚𝑛𝑜𝑝𝑠

𝑘
in order, and inject a new jmp

instruction (i.e., “jmp␣[𝐴call

𝑘
+GetSize(Icall

𝑘
)]”) in the end, which ac-

tually transfers the control-flow backwards to the next instruction
of I𝑐𝑎𝑙𝑙

𝑘
in the original section. It is noted that, when 𝑘 = 1, 𝐴𝑛𝑒𝑤

1 is
equal to the starting address of the new section (i.e., 𝐴𝑛𝑒𝑤

1 = 𝐴𝑛𝑒𝑤).
Otherwise, each new starting address of 𝐴𝑛𝑒𝑤

𝑘
is arranged one by

one. After all of 𝑁 transformations are applied as above, we can
reconstruct the final adversarial malware 𝑧𝑎𝑑𝑣 that preserves the
same semantics as the original malware 𝑧. Details can be found in
Appendix B.2 with Algorithm 5.

0x41B033: lea eax, [ebp+var_1]
.

0x41B041: push eax
0x41B042: call sub_41B348
0x41B047: mov [ebp+var_2], eax
0x41B04A: call sub_41B204
0x41B04F: mov ebx, eax

.
0x41B05D: lea esi, [esi+0F8h]

.
0x41B02D: push eax
0x41B02E: jmp loc_42C000

0x42C400: call sub_41B2F4
.

0x42C453: dec ah
0x42C455: inc ah

.
0x42C4A7: jmp loc_41B033

Section Information

".text" section newly added section

 Addressing Order

......
 section

......
 section

 Header
Information

DOS Header

DOS Stub

PE Header

Section
Table

Figure 4: The conceptual layout of the reconstructed adversar-

ial Windows malware file for the “LockBit 3.0” ransomware,

highlighting the corresponding reconstruction operations

for the one employed transformation in Fig. 3.

Again, taking one call-based redividing transformation that
is employed in the “LockBit 3.0” ransomware in Fig. 3 as an exam-
ple, we further present the conceptual layout of the corresponding
adversarial malware file of “LockBit 3.0” in Fig. 4. In particular, the
newly added section with red color is placed at the end of all original
sections, and those instructions in between the address of 0𝑥42𝐶400
and 0𝑥42𝐶4𝐴7 therein are the combination of I𝑐𝑎𝑙𝑙

𝑘
, I𝑠𝑒𝑚𝑛𝑜𝑝𝑠

𝑘
and

a new jmp instruction (with red color) to be injected by the deter-
mined call-based redividing transformation. Furthermore, for
the transformed “call” instruction in the original “.text” section, we
just replace it with a new “jmp” instruction of “jmp␣[loc_42C000]”
(with red color), in which 0𝑥42𝐶000 is the starting address of this
transformations in the new section. In short, it is worth mentioning
that, just applying two optimized transformations of call-based
redividing to the well-known “LockBit 3.0” ransomware could
generate a corresponding adversarial LockBit, which can success-
fully bypass three state-of-the-art learning-based malware detection
(i.e., MalGraph, Magic, MalConv) and three mainstream anti-virus
products (i.e., Avast, AVG, Kaspersky).

MalGuise: Generating Practical Adversarial Malware against Learning-based Windows Malware Detection ACM CCS 2023, Nov. 26–30, 2023, Copenhagen, Denmark

4 EVALUATION

In this section, experiments are conducted to answer the following
four research questions:
• RQ1 (Attack Performance): What is the attack perfor-

mance of MalGuise against learning-based Windows mal-
ware detection systems?
• RQ2 (Impacting Factors): What could affect the attack

performance of MalGuise?
• RQ3 (Utility Performance): Can the adversarial malware

generated by MalGuise preserve the original semantics?
• RQ4 (Real-world Performance): Is MalGuise effective

against real-world anti-virus products?

4.1 Evaluation Setup

4.1.1 Dataset. We evaluate the proposed MalGuise with a mixed
wild dataset with over 200,000 Windows executables that contain
both malware and goodware. In general, we follow the same data
collection approach as it is in [47]. To be specific, all Windows
malware is collected from the academic malware sample repository
provided by VirusTotal [73]. It is worth noting that, to ensure the
dataset quality and avoid possible biases in labeling malware, we
double confirm that any provided suspicious executable is malware
only if it is detected as malware by more than 2/3 of all anti-virus
engines (e.g., Macfee [52], Kaspersky [35]) in VirusTotal. On the
other hand, for Windows goodware, as there are no publicly dataset
available, we adopt the most commonly used data collection ap-
proach [33, 40, 45, 47, 60], which starts by deploying a clear virtual
machine with a operating system of Windows 10 Pro and then utiliz-
ing the 360 software manger [1] to install as much inbuilt software
as possible. As a result, we collect all these installed executables
as Windows goodware in our datasets. Furthermore, to focus on
the security vulnerability of the learning-based Windows malware
detection model itself and exclude the influence of whether executa-
bles in the dataset are packed or not, we employ multiple standard
unpacker tools (e.g., UPX [69], PEiD [32], CAPE [37]) to unpack
those malware and goodware in the dataset until they are no longer
detected as packed [3, 47]. Overall, as summarized in Table 1, we
finally obtain a mixed wild dataset of 210,251 Windows executables
with 101,641 malware and 108,610 goodware, and split it into three
disjoint training/validation/testing datasets.

Table 1: Summary statistics of the evaluating dataset.

Dataset Training Validation Testing Total

Malware 81,641 10,000 10,000 101,641
Goodware 88,610 10,000 10,000 108,610

Total 170,251 20,000 20,000 210,251

4.1.2 Target Windows Detection Systems. We demonstrate our pro-
posed attack of MalGuise on three state-of-the-art learning-based
Windows malware detection systems and seven real-world anti-
virus products.

Learning-basedWindowsMalware Detection & Implemen-

tation. We first evaluate our proposed MalGuise on three state-
of-the-art learning-based Windows malware detection systems,
i.e., MalGraph [47], Magic [75], and MalConv [60]. In particular,

as previously introduced in § 2.1, MalGraph and Magic are two
learning-based Windows malware detection on the basis of abstract
graph representation. MalGraph [47] first represents an executable
with a novel hierarchical abstract graph that combines function
call graph and CFG, and then employs graph neural network to
detect Windows malware. Magic [75] uses a similar framework
of learning-based malware detection but only represents the exe-
cutable with CFG. Differently, MalConv is the most representative
Windows malware detection based on raw bytes, which directly
represent the executable with a sequence of raw bytes in integers
and then feed them into a CNN-based classifier.

Furthermore, to reduce possible evaluation biases, we directly
adopt the publicly available implementation as well as the hyper-
parameters of the three malware detection systems in their own
papers, and evaluate their detection performance with three com-
monly used metrics, i.e., AUC [13], TPR/FPR [13], and balanced
Accuracy (bACC) [71] (more details can be found in Appendix C.1).
As shown in Table 2, in terms of AUC, the overall performance
of all three target systems is higher than 99%. Moreover, even for
the case where FPR is at an extremely low level of 0.1%, the accu-
racies of bACC are still as high as 96.36%, 94.59%, and 93.22% for
MalGraph, Magic, and MalConv, respectively. In short, the above
evaluations show similar experimental results to as them in the
original paper, demonstrating excellent performance in detecting
Windows malware.

Table 2: The overall performance of three learning-based

Windows malware detection systems.

Target
Models

AUC
(%)

FPR = 1% FPR = 0.1%

TPR (%) bACC (%) TPR (%) bACC (%)

MalGraph 99.94 99.34 99.18 92.78 96.36
Magic 99.89 99.02 99.02 89.28 94.59
MalConv 99.91 99.22 99.12 86.54 93.22

Real-world Anti-virus Products. To further demonstrate the
effectiveness of MalGuise in the real world, we additionally employ
seven anti-virus tools (i.e., McAfee [52], Comodo [21], Avast [10],
AVG [11], Kaspersky [35], ClamAV [20], and Microsoft Defender
ATP [54]) that are popular with both individual and enterprise users
as the target Windows detection systems. Among them, McAfee,
Comodo, Avast, AVG, and Kaspersky are five award-winning com-
mercial anti-virus products recommended in [67]. ClamAV is the
most popular open-sourced anti-virus engine that can be employed
in all major operating systems, including Linux, Windows, and Ma-
cOS. Microsoft Defender ATP is an ML-based security protection
tool that is widely used on the Windows platform [42, 55].

4.1.3 Baseline Adversarial Attacks. To demonstrate the effective-
ness of our proposed MalGuise against Windows malware detec-
tion, we compare it with two baseline adversarial attacks, i.e., Mal-
ware Makeover (MMO) [50] and SRL [78]. In particular, MMO ac-
tually is a white-box adversarial attack that uses a gradient-based
optimization to guide binary-diversification tools for manipulating
the raw bytes of Windows malware. SRL is a black-box adversar-
ial attack that trains a deep agent of reinforcement learning to
iteratively inject semantic NOPs into the CFG representation of

ACM CCS 2023, Nov. 26–30, 2023, Copenhagen, Denmark Anonym, et al.

Windows malware until the modified CFG can bypass the target
malware detection. It is worth noting that, SRL only generates
the adversarial CFG features rather than adversarial malware exe-
cutable, it thus is not applicable to MalConv which requires inputs
of raw bytes. To facilitate fair comparisons with MalGuise, we fol-
low the same experimental setting of both MMO and SRL in their
original papers and give more details in Appendix C.2.

4.1.4 Evaluation Metrics of Attack Success. To evaluate the perfor-
mance of our proposed MalGuise, we use two metrics of attack
success as follows.

1) Attack Success Rate (ASR) is the most commonly used
metric in evaluating adversarial attacks [44, 46, 47]. Suppose there is
a set of candidate malware samplesZ to be evaluated, ASR is defined
as the ratio of generated adversarial malware that successfully
bypasses the target system (i.e., 𝑓 (𝑧𝑎𝑑𝑣) = 0) among all evaluated
malware samples (i.e., 𝑓 (𝑧) = 1) in our evaluation as follows.

𝐴𝑆𝑅 =
|𝑓 (𝑧) = 1 ∧ 𝑓 (𝑧𝑎𝑑𝑣) = 0|

|𝑓 (𝑧) = 1| , ∀𝑧 ∈ Z (7)

in which | · | denotes the number of counts that meet the condition.
The larger ASR is, the more effective the adversarial attack is.

2) Semantics Preservation Rate (SPR). Although successfully
bypassing the target system, the generated adversarial malware
might not preserve the same semantics as the original malware,
i.e., cannot be executed or lose the original malicious behaviors. In
particular, we define SPR as the ratio of adversarial malware with
the original semantics preserved among all evaluated adversarial
malware as follows.

𝑆𝑃𝑅 =
|𝑆𝑒𝑚(𝑧, 𝑧𝑎𝑑𝑣) = 1|

|𝑓 (𝑧) = 1 ∧ 𝑓 (𝑧𝑎𝑑𝑣) = 0| , ∀𝑧 ∈ Z (8)

in which 𝑆𝑒𝑚(𝑧, 𝑧𝑎𝑑𝑣) = 1 denotes 𝑧𝑎𝑑𝑣 and 𝑧 have the same
semantics (i.e., 𝑧𝑎𝑑𝑣 preserves the same semantics as 𝑧), while
𝑆𝑒𝑚(𝑧, 𝑧𝑎𝑑𝑣) = 0 denotes 𝑧𝑎𝑑𝑣 does not preserve the same seman-
tics. In § 4.2.3, we will elaborate how on to measure it empirically.

4.1.5 Implementation Details. Our MalGuise is primarily imple-
mented in Python and evaluated on a PC equipped with 20 Intel
Xeon 2.10GHz CPU, 128 GB memory, and 4 NVIDIA GeForce RTX
3090. To be specific, in the first phase (i.e., adversarial transforma-
tion preparation) of MalGuise, we employ the IDAPython plugin in
IDA Pro 6.4 [28] to disassemble Windows executables and represent
them with CFGs. By default, in the MCTS optimization, we set the
max length 𝑁 to 6, set the computational budget𝐶 to 40, set the sim-
ulation number 𝑆 to 1, and limit the size of injected semantic nops
to no more than 5% of the original malware’s size. To reconstruct
adversarial malware, we mainly employ two Python libraries of
pefile [15] and LIEF [59] to parse and manipulate Windows executa-
bles. It is worth noting that, those injected semantic nops can be
generally divided into four categories: arithmetic instructions (e.g.,
“add␣eax, 1; sub␣eax, 1”), logical instructions (e.g., “add␣eax, eax”),
comparison instructions (e.g., “cmp␣eax, eax”), and data transfer
instructions (e.g., “push␣eax; pop␣eax”).

4.2 Evaluation Results & Analysis

4.2.1 Answer to RQ1: The attack performance of MalGuise against
learning-basedWindows malware detection systems. To demonstrate

the attack effectiveness of our proposed MalGuise, we empirically
evaluate MalGuise by measuring and comparing the ASR perfor-
mance on all 10,000 testing malware samples from our benchmark
dataset. Table 3 presents the ASRs of MalGuise and two baseline ad-
versarial attacks (i.e., MMO and SRL) against three state-of-the-art
learning-based Windows malware detection systems, i.e., MalGraph,
Magic, and MalConv. Recall in § 4.1.3, we follow the same experi-
ment setting of baseline adversarial attacks in their original papers
to facilitate fair comparisons. It is also worth noting that, MMO is
essentially a white-box adversarial attack that presents an upper
bound of the attack effectiveness of the possible corresponding
black-box adversarial attack, and SRL is not applicable to MalConv
as it does not generate the real adversarial malware in raw bytes.

Table 3: Attack performance of MalGuise and two baseline

attacks against three learning-based Windows malware de-

tection systems in terms of attack success rates (ASR).

Attacks
MalGraph Magic MalConv

FPR
=1%

FPR
=0.1%

FPR
=1%

FPR
=0.1%

FPR
=1%

FPR
=0.1%

MMO [50] 15.55% 52.30% 12.82% 40.13% 11.99% 39.66%

SRL [78] 2.39% 19.59% 25.38% 86.77% - -

MalGuise 97.47% 97.77% 99.29% 99.42% 34.36% 97.38%

For the two baseline adversarial attacks, it is clearly observed
from Table 3 that, with the decrease of FPR of each target malware
detection system, more adversarial malware files can be success-
fully generated for the attack purpose, presenting a higher ASR of
each adversarial attack. The reason is evident that a lower value
of FPR allowed by a malware detection system indicates a higher
value of binary classification threshold. Hence, it is easier for the
adversarial attack to achieve the purpose of reducing the predicted
malicious probability of each original malware sample to a level
that is less than the threshold. Moreover, for MMO, it shows sim-
ilar and inferior attack effectiveness on the three target malware
detection systems. Particularly, in the case of FPR=1%, the ASRs of
MMO on three target systems are in the range of about 10% to 15%,
while in the case of FPR=0.1%, the ASRs of MMO are in the range
of about 40% to 50%. These observations suggest that, although
MMO can theoretically be used against all three target malware
detection systems, it exhibits inferior attack effectiveness overall.
The main reason we conjecture is that, as MMO manipulates the
entire raw bytes of malware with two binary diversification tools,
it does not take into account the unique characteristics of differ-
ent malware detection systems. Hence, MMO is not scalable as a
more effective adversarial attack by exploiting the unique char-
acteristics of each different malware detection. For SRL, it shows
an obviously higher ASR against Magic than MalGraph in both
cases of FPRs. This is mainly because SRL is specifically designed
to attack Magic in their original paper which purely builds on the
CFG representation. However, the hierarchical nature of MalGraph
that combines both function call graph and CFG further weakens
the attack effectiveness caused by SRL, as SRL only manipulates the
node information of CFG and ignores the manipulations of edge
information.

MalGuise: Generating Practical Adversarial Malware against Learning-based Windows Malware Detection ACM CCS 2023, Nov. 26–30, 2023, Copenhagen, Denmark

Compared with the two baseline adversarial attacks, it can be
seen from Table 3 that our proposed MalGuise achieves the best
attack effectiveness against all three learning-based malware detec-
tion systems in both cases of FPRs. In particular, when FPR=0.1%,
the values of ASR achieved by MalGuise are as high as 97.77%,
99.42%, and 97.38% for MalGraph, Magic, and MalConv, respec-
tively. Even when FPR=1%, the values of ASRs of MalGuise are
still higher than 97% for MalGraph and Magic. Differently, for Mal-
Conv with FPR=1%, the ASR of MalGuise is 34.36%. However, when
further investigating MalGuise in the subsequent § 4.2.2, we find
that its attack effectiveness against MalConv is highly dependent
on the injected semantic nops. Therefore, if using the 25 most fre-
quently used semantic nops, MalGuise can achieve a high ASR of
97.76% against MalConv. All these evaluation results demonstrate
that MalGuise can successfully bypass existing learning-based Win-
dows malware detection systems with a high ASR.

Answer to RQ1: In short, previous adversarial attacks either
do not offer satisfactory attack effectiveness, or fail to scale
well to other types of Windows malware detection. However,
our proposed MalGuise is agnostic to the target malware
detection system with a high attack success rate of mostly
over 97% achieved.

4.2.2 Answer to RQ2: Impacting factors that affect attack perfor-
mance of MalGuise? Now, we further perform ablation studies to
explore which impacting factors could affect the attack performance
of MalGuise.

Impact of different types of semantic nops. We investigate
the impact of different types of semantic nops that are generated to
be injected in the transformation of call-based redividing. First
of all, we divide the semantic nops generated by MalGuise into four
categories (i.e., arithmetic instructions, logical instructions, compar-
ison instructions, and data transfer instructions), and present the
occurrence frequency of different types of semantic nops that lead
to successful evasions against the three learning-based Windows
malware detection in Fig. 5, where all three malware detection are
in the case of FPR=1%. We can observe that, arithmetic/logic/data
transfer instructions are approximately the most effective instruc-
tions for MalGuise to be generated against MalGraph, Magic, and
MalConv. However, for MalConv, the occurrence frequency of the
generated comparison instructions (e.g. cmp eax,eax) is only 4.4%,
which means comparison instructions have almost no effect to
bypass MalConv.

Furthermore, we delve into the impact of different opcodes of
semantic nops generated by MalGuise to perform adversarial at-
tacks against MalGuise, and present the occurrence frequency of
different opcodes of semantic nops that lead to successful evasions
against MalConv in Fig. 6. It is clearly observed that, some opcodes
(e.g., dec/inc, xor, push/pop, and add/sub) of semantics nops oc-
cur with a relatively high frequency, while some other opcodes (e.g.,
cmp and test) of semantics nops occur with a relative frequency.
Next, when we limit MalGuise to using the 25 most frequently used
semantic nops, the ASR of MalGuise against MalConv increases
from 34.36% to 97.76%, which highlights the importance of different
types of semantic nops in MalGuise. Therefore, we can conclude

MalGraph Magic MalConv

Arithmetic
instructions

Logical
instructions

Comparison
instructions

Data transfer
instructions

33.4% 28.8% 29.1%

22.2% 13.4% 34.0%

25.9% 26.2% 4.4%

18.4% 31.6% 32.5%
0.05

0.10

0.15

0.20

0.25

0.30

Figure 5: The occurrence frequency of different types of se-

mantic nops in MalGuise that leads to successful evasions

against MalGraph, Magic, and MalConv.

that the attack performance of MalGuise can be significantly im-
proved by fine-tuning the types of semantic nops to be injected in
the transformation of call-based redividing.

dec/inc
xor push/pop

add/sub
mov or bswap

and xchg test cmp
0
5

10
15
20

Fr
eq

ue
nc
y(
%
)

17
.8
7

17
.6
9

14
.0
2

11
.2
4

7.
1

6.
33

6.
24

5.
77

5.
15

4.
22

3.
5

Figure 6: The occurrence frequency of different opcodes of

semantic nops in MalGuise that lead to successful evasions

against MalConv.

Impact of the numbers of modified blocks in the CFG rep-

resentation. We further investigate the impact of the numbers of
modified blocks in the CFG representation of all generated adversar-
ial malware samples that successfully evade all three learning-based
malware detection systems in the case of FPR=1%, and show their
corresponding distribution frequencies in Fig. 7. It is clearly seen
that over 98% of all adversarial malware samples that successfully
evade the three target systems require only modifications of no
more than four basic blocks of the corresponding CFG representa-
tion. In particular, MalGuise only needs to modify one basic block
to make 61% of malware samples to evade Magic, and only needs to
modify two basic blocks to make 79% and 56% of malware samples
to evade MalGraph and MalConv, respectively. The above evalua-
tion results indicate that, by only modifying a small number of basic
blocks of the CFG representation, our proposed MalGuise offers
excellent attack performance against all three target learning-based
Windows malware detection systems.

Impact of the MCTS optimization’s hyper-parameters. We
finally investigate how the hyper-parameters of the MCTS opti-
mization (i.e., the computation budget 𝐶 and the max length 𝑁 of
the sequence of call-based redividing transformations) affect
the attack performance of MalGuise. First of all, we follow the
same implementation settings that have been detailed in § 4.1.5
and only vary the value of computation budget 𝐶 to 10, 20, 30, 40,
50 and 60. The impact of the computation budget 𝐶 is shown in
Fig. 8(a), from which we can find that, with the increase of the

ACM CCS 2023, Nov. 26–30, 2023, Copenhagen, Denmark Anonym, et al.

1 2 3 4 5 6
Number of modified blocks

0.0
0.2
0.4
0.6

Fr
eq

ue
nc

y

0.36
0.43

0.15
0.04 0.01 <0

.0
1

MalGraph

(a) MalGraph

1 2 3 4 5 6
Number of modified blocks

0.0
0.2
0.4
0.6

Fr
eq

ue
nc

y

0.61

0.35

0.04 <0
.0

1

<0
.0

1

Magic

(b) Magic

1 2 3 4 5 6
Number of modified blocks

0.0
0.2
0.4
0.6

Fr
eq

ue
nc

y

0.12

0.44
0.32

0.10
0.02 <0

.0
1

MalConv

(c) MalConv

Figure 7: The distribution frequency of the number of modified basic blocks of the CFG representation for all generated

adversarial malware samples that successfully evade the three learning-based Windows malware detection systems.

computational budget 𝐶 form 10 to 20, the ASR of MalGuise rise
sharply up to over 97% against all three learning-based Windows
malware detection. When the computational budget 𝐶 reaches 20,
the attack performance of MalGuise tends to stabilize at a high
value of ASR over 97%. Similarly, we only vary the max length 𝑁

(i.e., 2, 4, 6, 8, and 10) of the sequence of call-based redividing
transformation employed in MalGuise and show the impact of max
length 𝑁 in Fig. 8(b). It is clearly observed that, when 𝑁 = 2, the
overall attack performance of MalGuise against all three target
malware detection is pretty well, for which MalGuise achieves over
99% ASR against Magic and over 97% ASR against both MalGraph
and MalConv. With the increase of N, the ASRs of MalGuise remain
stable at a high value over 97% against all target malware detection
systems. These observations indicate that our proposed MalGuise
can achieve high attack performance even with no more than two
transformations of call-based redividing employed. It is also
noted that the impact of other factors on the attack performance of
MalGuise is further discussed in Appendix D.1.

10 20 30 40 50 60
Computation budget

91
94
97

100

AS
R(

%
)

MalGraph
Magic

MalConv

(a) Impact of computation budget𝐶

2 1097
98
99

100

AS
R(

%
) MalGraph

Magic
MalConv

4 6 8
 Max Length

(b) Impact of max length 𝑁

Figure 8: Impact of different MCTS Optimization’s hyper-

parameters on the attack performance of MalGuise.

Answer to RQ2: In summary, targeting at different malware
detection systems, different factors of hyper-parameters in
MalGuise have different impacts on the attack performance,
and thereby we can fine-tune the hyper-parameters to further
improve the attack performance.

4.2.3 Answer to RQ3: The utility performance of MalGuise in terms
of preserving the original semantics. To verify whether the adver-
sarial malware files generated by MalGuise could preserve the
original semantics, we empirically evaluate the utility performance
of MalGuise and two baseline adversarial attacks against three
Windows malware detection systems in terms of semantics preser-
vation rate (SPR). As defined in Eq. (7), the core of the calculation of
SPR is 𝑆𝑒𝑚(𝑧, 𝑧𝑎𝑑𝑣) which needs to judge whether the adversarial

malware 𝑧𝑎𝑑𝑣 has the same semantics as the original malware 𝑧

(e.g., can 𝑧𝑎𝑑𝑣 be executed successfully? does 𝑧𝑎𝑑𝑣 appear the same
behaviors as 𝑧? etc.) Due to the inherent complexity of executables
in computer systems, there is no solution to exactly judge whether
the original semantics are preserved [7]. Therefore, we resort to an
empirical verification to calculate 𝑆𝑒𝑚(𝑧, 𝑧𝑎𝑑𝑣) by collecting and
comparing the two sequences of application programming inter-
faces (APIs) (i.e., API𝑧𝑎𝑑𝑣 and API𝑧) invoked by both 𝑧𝑎𝑑𝑣 and 𝑧

when they are run on Cuckoo sandbox [68]. As shown in Eq. (9),
to quantify the semantic difference between 𝑧𝑎𝑑𝑣 and 𝑧, we thus
compute a normalized edit distance 𝑑𝑖𝑠𝑡𝑛𝑜𝑟𝑚 (𝑧, 𝑧𝑎𝑑𝑣) [62] between
the two API sequences of API𝑧𝑎𝑑𝑣 and API𝑧 as follow.

𝑑𝑖𝑠𝑡𝑛𝑜𝑟𝑚 (𝑧, 𝑧𝑎𝑑𝑣) =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (API𝑧 , API𝑧𝑎𝑑𝑣)

𝑀𝑎𝑥
(
𝑙𝑒𝑛(API𝑧), 𝑙𝑒𝑛(API𝑧𝑎𝑑𝑣)

) ∈ [0, 1] (9)

in which 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (API𝑧 , API𝑧𝑎𝑑𝑣) denotes the edit distance be-
tween two sequences and 𝑙𝑒𝑛(·) denotes the length of the sequence.

However, since malware may perform random actions during
execution [34], the API sequences collected by running the same
malware 𝑧 twice in the same environment may be different, which
means 𝑑𝑖𝑠𝑡𝑛𝑜𝑟𝑚 (𝑧, 𝑧) almost can not take the value of 0. There-
fore, we calculate value of 𝑆𝑒𝑚(𝑧, 𝑧) ∈ {0, 1} by comparing the
𝑑𝑖𝑠𝑡𝑛𝑜𝑟𝑚 (𝑧, 𝑧) with a general distance threshold 𝑑𝑖𝑠𝑡𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . In
particular for determining 𝑑𝑖𝑠𝑡𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , we first analyze all origi-
nal malware samples in the same Cuckoo sandbox twice and then
select the value at the 99.5-th percentile among all the correspond-
ing 𝑑𝑖𝑠𝑡𝑛𝑜𝑟𝑚 (𝑧, 𝑧) as 𝑑𝑖𝑠𝑡𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . After that, as shown in Eq. (10),
we can finally determine whether 𝑧𝑎𝑑𝑣 and 𝑧 have the same seman-
tics by comparing their normalized edit distance 𝑑𝑖𝑠𝑡𝑛𝑜𝑟𝑚 (𝑧, 𝑧𝑎𝑑𝑣)
with 𝑑𝑖𝑠𝑡𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , and further evaluate the evaluation metrics of
𝑆𝑃𝑅 according to Eq. (8).

𝑆𝑒𝑚(𝑧, 𝑧𝑎𝑑𝑣) =
{
1 if 𝑑𝑖𝑠𝑡𝑛𝑜𝑟𝑚 (𝑧, 𝑧𝑎𝑑𝑣) < 𝑑𝑖𝑠𝑡𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0 otherwise.
(10)

Table 4 present the overall utility performance of MalGuise and
two baseline adversarial attack in terms of SPR, in which a higher
value of SPR indicate the more effective the adversarial attack is.
It should be noted that, due to the extreme resource and time con-
sumption of the above evaluation process, we randomly select 10%
from all adversarial malware that successfully bypasses the cor-
responding target system in § 4.2.1 for the subsequent evaluation.
As for SRL, it is just a feature-space adversarial attack without
generating executable adversarial malware files, not to mention
evaluates its utility performance. Apparently, it can be observed

MalGuise: Generating Practical Adversarial Malware against Learning-based Windows Malware Detection ACM CCS 2023, Nov. 26–30, 2023, Copenhagen, Denmark

Table 4: Utility performance of MalGuise and two baseline

attacks against three learning-based Windows malware de-

tection systems in terms of semantics preservation rate (SPR).

Attacks

MalGraph Maigc MalConv

FPR
=1%

FPR
=0.1%

FPR
=1%

FPR
=0.1%

FPR
=1%

FPR
=0.1%

MMO [50] 41.8% 49.4% 39.6% 39.8% 39.2% 50.8%

SRL [78] - - - - - -

MalGuise 91.84% 91.99% 93.45% 92.28% 92.67% 91.68%

from Table 4 that, the SPRs achieved by MalGuise against three
learning-based Windows malware detection are at a low level, i.e.,
approximately ranging from 40% to 50%. It indicates that, only less
than 50% of adversarial malware generated by MMO could preserve
their original semantics before be attacking. However, our proposed
MalGuise achieves the best utility performance of over 91% SPR
for all three malware detection systems, which demonstrates the ef-
fectiveness of MalGuise in preserving the original semantics of the
generated adversarial malware. Although more than 91% of adver-
sarial malware generated by MalGuise can maintain their original
semantics, it is worth noting that, approximately 8% still cannot
maintain mainly due to the unique nature of different malware
samples. We carefully detail the specific reasons in Appendix D.2,
which can be used to improve the utility performance of MalGuise
in preserving the original semantics.

Answer to RQ3: Previous adversarial attacks either only
generate non-executable adversarial “feature”, or generate a
large proportion of adversarial malware that lose their original
semantics. However, our proposed MalGuise exhibits the best
utility performance of over 91% of the generated adversarial
malware files with their original semantics preserved.

4.2.4 Answer to RQ4: The attack performance of MalGuise against
real-world anti-virus products. To further understand the real threats
of our proposed MalGuise against real-world anti-virus products,
we empirically evaluate MalGuise against seven commercial anti-
virus tools (i.e., McAfee [52], Comodo [21], Avast [10], AVG [11],
Kaspersky [35], ClamAV [20], and Microsoft Defender ATP [54]),
and measure the ASR performance on 1,000 testing malware sam-
ples, which are randomly selected from the entire testing dataset.
It should be noted that, the main reason for randomly selecting
1,000 testing malware samples for evaluation is that these seven
anti-virus products are deployed remotely on another machine,
and their processing and scanning speeds are much slower than
learning-based Windows malware detection.

Table 5: The attack success rates (ASRs) of MalGuise against
seven real-world anti-virus products.

Attacks McAfee ATP ClamAV Comodo Avast AVG Kaspersky

MalGuise 48.81% 70.63% 31.94% 36.00% 6.13% 7.92% 11.29%
MalGuise (S) 52.49% 74.97% 32.33% 36.36% 5.64% 8.17% 13.36%

Increased ASR +3.68% +4.34% +0.39% +0.36% -0.49% +0.25% +2.07%

The attack success rates (ASRs) of MalGuise against seven real-
world anti-virus products are shown in Table 5, in which ATP
is short for Microsoft Defender ATP. It can be observed that for
four (i.e., McAfee, ATP, ClamAV, and Comodo) of the seven eval-
uated anti-virus products, our proposed MalGuise can achieve an
ASR of more than 30%. Especially for ATP, the achieved ASR of
MalGuise reach 70.63%. Similar to the discussion in § 4.2.2, we fur-
ther explore the impact of inserted semantic nops on the attack
performance of MalGuise against anti-virus products, and limit
the semantic nops to be inserted in MalGuise to 25 most effective
semantic nops that we selected We denote this variant of MalGuise
as MalGuise (S) for brevity. Compared with the default MalGuise,
it is observed from Table 5, the specific selection of semantics nops
(i.e., MalGuise (S)) can lead to overall improvement of attack per-
formance against six anti-virus products except Avast. In particular,
MalGuise (S) can increase the value of ASR against ATP by 4.34%, in-
dicating MalGuise can be further improved by carefully fine-tuning
its hyperparameters. These observations clearly demonstrate that
MalGuise is highly effective against real-world anti-virus products
under the strict black-box setting and poses potentially serious
security threats to the computer system of users.

Answer to RQ4: Our proposed MalGuise is systematically
and empirically demonstrated to be effective against seven
commonly used real-world anti-virus products. In particular,
MalGuise can achieve an attack success rate of more than 30%
against four of them, i.e., McAfee, ATP, ClamAV, and Comodo.

5 DISCUSSION

5.1 Potential Defenses

To further evaluate the attack performance of MalGuise in the
worst-case scenario that the defender has full knowledge of it, we
attempt to improve the robustness of the target learning-based
Windows malware detection through adversarial training. As the
training process is performed on the raw bytes of executables which
are extremely costly to be generated, we take both MalGraph and
Magic in the case of FPR=1% as two representative target systems,
and re-train them from scratch with almost all parameter settings
unchanged. The only difference is that, in the adversarial training
process, our training samples not only include the original mal-
ware and goodware, but also additionally added the corresponding
adversarial malware generated by MalGuise. Table 9 shows the
performance comparison between the original target systems (i.e.,
MalGraph and Magic) and the systems defended with adversarial
training. It is clearly observed that, after adversarial training, the
detection performance (i.e., AUC, TPR, and bACC) of MalGraph and
Magic remains basically unchanged, while the robustness perfor-
mance (i.e., the opposite of ASR) of them increases to some extent.
Through adversarial training, it is quite reasonable that the robust-
ness performance of existing learning-based Windows malware
detection can be improved, but our proposed MalGuise can still
achieve ASRs as high as 55.33% and 83.10% against MalGraph and
Magic, respectively. Therefore, we can conclude that, even with
the possible defense of adversarial training where the defender is
supposed to have the full knowledge of MalGuise, MalGuise is still
highly effective against existing malware detection.

ACM CCS 2023, Nov. 26–30, 2023, Copenhagen, Denmark Anonym, et al.

ASR(%) AUC(%) TPR(%)bACC(%)0

50

100 97
.4

7

99
.9

4

99
.3

4

99
.1

8

55
.3

3 99
.9

2

98
.8

6

98
.9

4

MalGraph (FPR=1%)
Before After

(a) The target system is MalGraph.

ASR(%) AUC(%) TPR(%)bACC(%)0

50

100 99
.2

9

99
.8

9

99
.0

2

99
.0

2

83
.1 99

.8
4

99
.0

3

99
.0

2

Magic (FPR=1%)
Before After

(b) The target system is Magic.

Figure 9: The performance comparison between the original

target system (before) and the target system defended with

adversarial training (after).

5.2 Related Work

5.2.1 Learning-basedWindowsmalware detection. Due to the clearly
considerable diversity of malware among different file formats (e.g.,
PE, ELF, Mach-O, APK) in different operating systems (e.g., Win-
dows, Linux, macOS, Android), research shows that there is no
malware analysis technique that is universally applicable to all
different in different operating systems, and thereby all existing
malware detection commonly points out which operating system
and which file format of malware will be studied [48, 61, 70]. As for
the Windows malware detection that this paper focuses on, with
recent huge successes achieved in masses of different application
domains, machine learning, and deep learning techniques have
been extensively studied to increase both effectiveness and gen-
eralization in detecting newly emerging and previously unknown
Windows malware, namely learning-based Windows malware de-
tection. As previously introduced in § 2.1 and Fig. 1, learning-based
Windows malware detection share a similar spirit that first performs
somewhat feature engineering over the input software to extract a
feature representation in numerical value, and then applies reason-
able ML/DL models (e.g., SVM [22], CNN [41], RNN [18], GNN [38])
to learn a malware classifier in discriminating between malware
and goodware. To be specific, the feature representations extracted
by feature engineering for Windows malware can be mainly divided
into two categories, i.e., static features and dynamic features [48].
In particular, static features refer to those features that can be ob-
tained without running the input software, such as raw bytes, API
calls, abstract graphs, etc. On the contrary, dynamic features refer
to those features that can only be obtained by running the input
software, such as CPU/Memory/File/Network status, etc. Due to
the significant complexity and time consumption for the extraction
of dynamic features, static features instead exhibit better scalability
for malware detection and thereby being more ubiquitous to be
deployed [48, 76]. Among existing static features, recent studies
actually have demonstrated that the abstract graph representation
of Windows executables, including control flow graph and func-
tion call graph, show the state-of-the-art performance of malware
detection in practice [2, 5, 27, 30, 75].

5.2.2 Adversarial attacks against malware detection. Almost all ex-
isting research on adversarial attacks for the task of malware de-
tection focuses on learning-based malware detection with static
features. Owing to the vast diversity of feature representations
employed by different kinds of learning-based malware detection,
researchers have proposed different adversarial attacks accordingly.
To be specific, to attack those malware detection methods based on

API calls, a line of adversarial attacks since 2017 has been proposed
via adding irrelevant API calls, which are selected by gradient-based
optimizations or greedy algorithms [4, 17, 29, 72]. However, these
adversarial attacks are impractical as they actually generate adver-
sarial API calls rather than realistic executable adversarial malware
that preserves the original semantics. As for malware detection
based on raw bytes, especially for MalConv [60], many research
efforts of adversarial attacks have been made by either partially
modifying specific regions or globally modifying all raw bytes while
preserving the same semantics. For instance, all of [6, 24, 39, 40, 66]
rely on appending or injecting maliciously generated bytes at spe-
cific locations of the input malware, while MMO [50] entirely manip-
ulates its raw bytes with binary-diversification tools. Nevertheless,
we argue that those adversarial attacks designed are strictly limited
to aim at raw-bytes-based malware detection, and thus cannot be
scalable to other various kinds of malware detection. Furthermore,
the most recent studies have begun to explore adversarial attacks
against the latest and most advanced malware detection based on
abstract graph representation. In 2022, Zhang et al. [78] propose an
adversarial attack of SRL that sequentially injects semantic NOPs
into the control-flow graph representation of the given malware
under the guidance of reinforcement learning. Likewise, our work
also aims at the most advanced malware detection based on CFG,
but fundamentally differs from SRL in the following three aspects.

(1) SRL only employ a coarse-grained transformation that ma-
nipulates the nodes of CFG, however, we propose a novel
and finer-grained transformation call-based redividing
that manipulate both nodes and edges of CFG.

(2) As discussed in § 4.2.3, SRL is a feature-space adversarial
attack that essentially generates adversarial “features”, while
our proposed MalGuise can successfully generate real ad-
versarial malware that preserve the original semantics.

(3) Existing adversarial attacks including SRL only evaluate
against specific malware detection systems, while our pro-
posed MalGuise additionally other anti-virus tools in prac-
tice, thereby demonstrating better attacking generalizability.

6 CONCLUSION

In this paper, we first propose a novel semantics-preserving trans-
formation of call-based redividing that concurrently manipu-
lates both nodes and edges of the CFG representation of Windows
executables, and further present an adversarial attack framework
against learning-based windows malware detection in the strict
black-box setting, namely MalGuise. Extensive evaluations demon-
strate that MalGuise can not only successfully bypass state-of-the-
art learning-based Windows malware detection with an attack
success rate of mostly over 97%, but also can bypass seven represen-
tative commercial anti-virus products with an attack success rate in
a range of 5.64% to 74.97%. Our findings indicate a clear and urgent
need of strengthening the robustness of existing learning-based
malware detection systems and commercial anti-viruses, or even
designing new alternative solutions from scratch with robustness
in mind.

REFERENCES

[1] 360 Total Security. 2020. https://www.360totalsecurity.com/. Online (last accessed
Aug. 1, 2020).

https://www.360totalsecurity.com/

MalGuise: Generating Practical Adversarial Malware against Learning-based Windows Malware Detection ACM CCS 2023, Nov. 26–30, 2023, Copenhagen, Denmark

[2] Ahmed Abusnaina, Mohammed Abuhamad, Hisham Alasmary, Afsah Anwar,
Rhongho Jang, Saeed Salem, Daehun Nyang, and David Mohaisen. 2021. DL-
FHMC: Deep learning-based fine-grained hierarchical learning approach for
robust malware classification. IEEE Transactions on Dependable and Secure Com-
puting (2021).

[3] Hojjat Aghakhani, Fabio Gritti, Francesco Mecca, Martina Lindorfer, Stefano
Ortolani, Davide Balzarotti, Giovanni Vigna, and Christopher Kruegel. 2020.
When Malware is Packin’Heat; Limits of Machine Learning Classifiers Based on
Static Analysis Features. In NDSS.

[4] Abdullah Al-Dujaili, Alex Huang, Erik Hemberg, and Una-May O’Reilly. 2018.
Adversarial deep learning for robust detection of binary encoded malware. In
IEEE Security and Privacy Workshops.

[5] Hisham Alasmary, Ahmed Abusnaina, Rhongho Jang, Mohammed Abuhamad,
Afsah Anwar, DaeHun Nyang, and David Mohaisen. 2020. Soteria: Detecting
adversarial examples in control flow graph-based malware classifiers. In Interna-
tional Conference on Distributed Computing Systems. IEEE, Singapore, 888–898.

[6] Hyrum S Anderson, Anant Kharkar, Bobby Filar, and Phil Roth. 2017. Evading
machine learning malware detection. In Black Hat USA.

[7] Martin Apel, Christian Bockermann, and Michael Meier. 2009. Measuring sim-
ilarity of malware behavior. In 2009 IEEE 34th Conference on Local Computer
Networks. IEEE, 891–898.

[8] Atlas VPN. 2022. Over 95% of all new malware threats discovered in 2022 are
aimed at Windows. https://atlasvpn.com/blog/over-95-of-all-new-malware-
threats-discovered-in-2022-are-aimed-at-windows. Online (last accessed De-
cember 25, 2022).

[9] AV-TEST Institute. 2022. Total Malware Statistics. https://www.av-test.org/en/
statistics/malware/. Online (last accessed December 25, 2022).

[10] Avast. 2022. https://www.avast.com/. Online (last accessed Nov. 1, 2022).
[11] Avg. 2022. https://www.avg.com/. Online (last accessed Nov. 1, 2022).
[12] Battista Biggio and Fabio Roli. 2018. Wild patterns: Ten years after the rise of

adversarial machine learning. Pattern Recognition 84 (2018), 317–331.
[13] Andrew P Bradley. 1997. The use of the area under the ROC curve in the

evaluation of machine learning algorithms. Pattern recognition 30, 7 (1997),
1145–1159.

[14] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I
Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samoth-
rakis, and Simon Colton. 2012. A survey of Monte Carlo tree search methods.
IEEE Transactions on Computational Intelligence and AI in Games 4, 1 (2012), 1–43.

[15] Ero Carrera. 2022. PEFILE. https://github.com/erocarrera/pefile. Online (last
accessed December 25, 2022).

[16] Fabrício Ceschin, Heitor Murilo Gomes, Marcus Botacin, Albert Bifet, Bernhard
Pfahringer, Luiz S Oliveira, and André Grégio. 2020. Machine Learning (In)
Security: A Stream of Problems. (2020). arXiv preprint arXiv:2010.16045.

[17] Lingwei Chen, Yanfang Ye, and Thirimachos Bourlai. 2017. Adversarial machine
learning in malware detection: Arms race between evasion attack and defense. In
European Intelligence and Security Informatics Conference. IEEE, Athens, Greece,
99–106.

[18] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder–Decoder for Statistical Machine Translation.
In Empirical Methods in Natural Language Processing. ACL, Doha, Qatar, 1724–
1734.

[19] Mihai Christodorescu, Somesh Jha, Sanjit A. Seshia, Dawn Xiaodong Song, and
Randal E. Bryant. 2005. Semantics-aware malware detection. IEEE Symposium
on Security and Privacy (2005), 32–46.

[20] ClamAv. 2022. https://www.clamav.net/. Online (last accessed Nov. 1, 2022).
[21] Comodo. 2022. https://www.comodo.com/home/internet-security/antivirus.php.

Online (last accessed Nov. 1, 2022).
[22] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine

Learning 20, 3 (1995), 273–297.
[23] Rémi Coulom. 2006. Efficient selectivity and backup operators in Monte-Carlo

tree search. In International conference on computers and games. Springer, 72–83.
[24] Luca Demetrio, Scott E Coull, Battista Biggio, Giovanni Lagorio, Alessandro Ar-

mando, and Fabio Roli. 2020. Adversarial EXEmples: A Survey and Experimental
Evaluation of Practical Attacks on Machine Learning for Windows Malware
Detection. arXiv:2008.07125 (2020).

[25] Sylvain Gelly, Levente Kocsis, Marc Schoenauer, Michele Sebag, David Silver,
Csaba Szepesvári, and Olivier Teytaud. 2012. The grand challenge of computer Go:
Monte Carlo tree search and extensions. Commun. ACM 55, 3 (2012), 106–113.

[26] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and
harnessing adversarial examples. In ICLR.

[27] Jerome Dinal Herath, Priti Prabhakar Wakodikar, Ping Yang, and Guanhua Yan.
2022. CFGExplainer: Explaining Graph Neural Network-Based Malware Clas-
sification from Control Flow Graphs. In 52nd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 172–184.

[28] Hex-Rays. 2022. IDA Pro. https://hex-rays.com/ida-pro/. Online (last accessed
Jan. 11, 2022).

[29] Weiwei Hu and Ying Tan. 2017. Generating adversarial malware examples for
black-box attacks based on gan. arXiv:1702.05983 (2017).

[30] Xin Hu, Tzi-cker Chiueh, and Kang G Shin. 2009. Large-scale malware indexing
using function-call graphs. In CCS.

[31] Christopher Jämthagen, Patrik Lantz, and Martin Hell. 2013. A new instruction
overlapping technique for anti-disassembly and obfuscation of x86 binaries. In
2013 Workshop on Anti-malware Testing Research. IEEE, 1–9.

[32] Jibz and Qwerton and snaker and xineohP. 2020. PEiD: PE iDentifier. https:
//www.aldeid.com/wiki/PEiD. Online (last accessed Dec. 15, 2020).

[33] Yuan Junkun, Zhou Shaofang, Lin Lanfen, Wang Feng, and Cui Jia. 2020. Black-
Box Adversarial Attacks Against Deep Learning Based Malware Binaries Detec-
tion with GAN. In ECAI.

[34] Takahiro Kasama, Katsunari Yoshioka, Daisuke Inoue, and Tsutomu Matsumoto.
2012. Malware detection method by catching their random behavior in multiple
executions. In 2012 IEEE/IPSJ 12th International Symposium on Applications and
the Internet. IEEE, 262–266.

[35] Kaspersky. 2022. https://www.kaspersky.com/. Online (last accessed Nov. 1,
2022).

[36] kaspersky. 2022. AI and Machine Learning in Cybersecurity — How They Will
Shape the Future. https://www.kaspersky.com/resource-center/definitions/ai-
cybersecurity. Online (last accessed December 25, 2022).

[37] Kevin O’Reilly. 2020. CAPE: Malware Configuration And Payload Extraction.
https://github.com/kevoreilly/CAPEv2. Online (last accessed Dec. 15, 2020).

[38] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

[39] Bojan Kolosnjaji, Ambra Demontis, Battista Biggio, Davide Maiorca, Giorgio
Giacinto, Claudia Eckert, and Fabio Roli. 2018. Adversarial malware binaries:
Evading deep learning for malware detection in executables. In EUSIPCO.

[40] Felix Kreuk, Assi Barak, Shir Aviv-Reuven, Moran Baruch, Benny Pinkas, and
Joseph Keshet. 2018. Deceiving end-to-end deep learning malware detectors
using adversarial examples. arXiv:1802.04528 (2018).

[41] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in Neural Information
Processing Systems. Curran Associates, Inc., Lake Tahoe, Nevada, United States,
1106–1114.

[42] Vasantha Lakshmi. 2019. Beginning Security with Microsoft Technologies. Be-
ginning Security with Microsoft Technologies (2019).

[43] Deqiang Li, Qianmu Li, Yanfang Ye, and Shouhuai Xu. 2021. Arms Race in
Adversarial Malware Detection: A Survey. ACM Computing Surveys (CSUR) 55, 1
(2021), 1–35.

[44] Jinfeng Li, Tianyu Du, Shouling Ji, Rong Zhang, Quan Lu, Min Yang, and Ting
Wang. 2020. TextShield: Robust text classification based on multimodal embed-
ding and neural machine translation. In USENIX Security.

[45] Xiang Li, Kefan Qiu, Cheng Qian, and Gang Zhao. 2020. An Adversarial Machine
Learning Method Based on OpCode N-grams Feature in Malware Detection. In
DSC.

[46] Xiang Ling, Shouling Ji, Jiaxu Zou, Jiannan Wang, Chunming Wu, Bo Li, and
Ting Wang. 2019. DEEPSEC: A Uniform Platform for Security Analysis of Deep
Learning Model. In IEEE Symposium on Security and Privacy. IEEE, San Francisco,
USA, 673–690.

[47] Xiang Ling, Lingfei Wu, Wei Deng, Zhenqing Qu, Jiangyu Zhang, Sheng Zhang,
Tengfei Ma, Bin Wang, Chunming Wu, and Shouling Ji. 2022. MalGraph: Hier-
archical Graph Neural Networks for Robust Windows Malware Detection. In
IEEE Conference on Computer Communications (INFOCOM). IEEE, Virtual Event,
1998–2007.

[48] Xiang Ling, Lingfei Wu, Jiangyu Zhang, Zhenqing Qu, Wei Deng, Xiang Chen,
Chunming Wu, Shouling Ji, Tianyue Luo, Jingzheng Wu, and Yanjun Wu. 2021.
Adversarial Attacks against Windows PE Malware Detection: A Survey of the
State-of-the-Art. arXiv preprint arXiv:2112.12310 (2021).

[49] lockbit-3.0. 2022. https://www.avertium.com/resources/threat-reports/an-
update-on-lockbit-3.0. Online (last accessed Dec. 18, 2022).

[50] Keane Lucas, Mahmood Sharif, Lujo Bauer, Michael K Reiter, and Saurabh Shintre.
2021. Malware Makeover: breaking ML-based static analysis by modifying
executable bytes. In ACM Asia Conference on Computer and Communications
Security. 744–758.

[51] Davide Maiorca, Battista Biggio, and Giorgio Giacinto. 2019. Towards adversarial
malware detection: Lessons learned from PDF-based attacks. ACM Computing
Surveys (CSUR) 52, 4 (2019), 1–36.

[52] Mcafee. 2022. https://www.mcafee.com/. Online (last accessed Nov. 1, 2022).
[53] Alex McFarland. 2022. 10 Best Antivirus Programs of 2022 (AI Powered). https:

//www.unite.ai/10-best-antivirus-programs-of-2022-ai-powered/. Online (last
accessed December 25, 2022).

[54] Microsoft Defender for Endpoint. 2022. https://learn.microsoft.com/en-
us/microsoft-365/security/defender-endpoint/microsoft-defender-
endpoint?view=o365-worldwide/. Online (last accessed Nov. 1, 2022).

[55] Microsoft Defender Security Research Team. 2022. Windows Defender
ATP machine learning: Detecting new and unusual breach activity.
https://www.microsoft.com/en-us/security/blog/2017/08/03/windows-

https://atlasvpn.com/blog/over-95-of-all-new-malware-threats-discovered-in-2022-are-aimed-at-windows
https://atlasvpn.com/blog/over-95-of-all-new-malware-threats-discovered-in-2022-are-aimed-at-windows
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://www.avast.com/
https://www.avg.com/
https://github.com/erocarrera/pefile
https://www.clamav.net/
https://www.comodo.com/home/internet-security/antivirus.php
https://hex-rays.com/ida-pro/
https://www.aldeid.com/wiki/PEiD
https://www.aldeid.com/wiki/PEiD
https://www.kaspersky.com/
https://www.kaspersky.com/resource-center/definitions/ai-cybersecurity
https://www.kaspersky.com/resource-center/definitions/ai-cybersecurity
https://github.com/kevoreilly/CAPEv2
https://www.avertium.com/resources/threat-reports/an-update-on-lockbit-3.0
https://www.avertium.com/resources/threat-reports/an-update-on-lockbit-3.0
https://www.mcafee.com/
https://www.unite.ai/10-best-antivirus-programs-of-2022-ai-powered/
https://www.unite.ai/10-best-antivirus-programs-of-2022-ai-powered/
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/microsoft-defender-endpoint?view=o365-worldwide/
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/microsoft-defender-endpoint?view=o365-worldwide/
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/microsoft-defender-endpoint?view=o365-worldwide/
https://www.microsoft.com/en-us/security/blog/2017/08/03/windows-defender-atp-machine-learning-detecting-new-and-unusual-breach-activity/
https://www.microsoft.com/en-us/security/blog/2017/08/03/windows-defender-atp-machine-learning-detecting-new-and-unusual-breach-activity/

ACM CCS 2023, Nov. 26–30, 2023, Copenhagen, Denmark Anonym, et al.

defender-atp-machine-learning-detecting-new-and-unusual-breach-activity/.
Online (last accessed Nov. 1, 2022).

[56] Microsoft, Inc. 2022. PE Format. https://docs.microsoft.com/en-us/windows/
win32/debug/pe-format. Online (last accessed August 20, 2022).

[57] Rémi Munos et al. 2014. From bandits to Monte-Carlo Tree Search: The optimistic
principle applied to optimization and planning. Foundations and Trends® in
Machine Learning 7, 1 (2014), 1–129.

[58] Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and Lorenzo Cavallaro.
2020. Intriguing properties of adversarial ml attacks in the problem space. In
S&P.

[59] Quarkslab. 2022. LIEF : Library to Instrument Executable Formats. https://lief-
project.github.io/. Online (last accessed December 25, 2022).

[60] Edward Raff, Jon Barker, Jared Sylvester, Robert Brandon, Bryan Catanzaro,
and Charles Nicholas. 2017. Malware detection by eating a whole EXE. arXiv:
1710.09435 (2017).

[61] Edward Raff and Charles Nicholas. 2020. A Survey of Machine Learning Methods
and Challenges for Windows Malware Classification. (2020). arXiv preprint
arXiv:2006.09271.

[62] Eric Sven Ristad and Peter N Yianilos. 1998. Learning string-edit distance. IEEE
Transactions on Pattern Analysis and Machine Intelligence 20, 5 (1998), 522–532.

[63] Takami Sato, Junjie Shen, Ningfei Wang, Yunhan Jia, Xue Lin, and Qi Alfred
Chen. 2021. Dirty road can attack: Security of deep learning based automated
lane centering under Physical-World attack. In 30th USENIX Security Symposium.
3309–3326.

[64] Giorgio Severi, Jim Meyer, Scott Coull, and Alina Oprea. 2021. Explanation-
Guided Backdoor Poisoning Attacks Against Malware Classifiers. In 30th USENIX
Security Symposium (USENIX Security 21). 1487–1504.

[65] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. nature 529, 7587 (2016), 484–489.

[66] Octavian Suciu, Scott E Coull, and Jeffrey Johns. 2019. Exploring adversarial
examples in malware detection. In IEEE Security and Privacy Workshops.

[67] The best antivirus protection. 2022. https://www.pcmag.com/picks/the-best-
antivirus-protection. Online (last accessed Nov. 1, 2022).

[68] The Cuckoo Sandbox. 2022. https://cuckoosandbox.org/. Online (last accessed
Nov. 1, 2022).

[69] The UPX Team. 2020. UPX: The Ultimate Packer for eXecutables. https://upx.
github.io/. Online (last accessed Dec. 15, 2020).

[70] Daniele Ucci, Leonardo Aniello, and Roberto Baldoni. 2019. Survey of machine
learning techniques for malware analysis. Computers & Security 81 (2019), 123–
147.

[71] Digna R Velez, Bill C White, Alison A Motsinger, William S Bush, Marylyn D
Ritchie, Scott M Williams, and Jason H Moore. 2007. A balanced accuracy function
for epistasis modeling in imbalanced datasets using multifactor dimensionality
reduction. Genetic Epidemiology: the Official Publication of the International
Genetic Epidemiology Society 31, 4 (2007), 306–315.

[72] Sicco Verwer, Azqa Nadeem, Christian Hammerschmidt, Laurens Bliek, Abdullah
Al-Dujaili, and Una-May O’Reilly. 2020. The Robust Malware Detection Challenge
and Greedy Random Accelerated Multi-Bit Search. In AISec.

[73] VirusTotal.com. 2020. https://www.virustotal.com/gui/contact-us. Online (last
accessed Aug. 1, 2020).

[74] Han Xu, Yao Ma, Hao-Chen Liu, Debayan Deb, Hui Liu, Ji-Liang Tang, and Anil K
Jain. 2020. Adversarial attacks and defenses in images, graphs and text: A review.
IJAC 17, 2 (2020), 151–178.

[75] Jiaqi Yan, Guanhua Yan, and Dong Jin. 2019. Classifying malware represented as
control flow graphs using deep graph convolutional neural network. In DSN.

[76] Yanfang Ye, Tao Li, Donald Adjeroh, and S Sitharama Iyengar. 2017. A survey on
malware detection using data mining techniques. ACM Computing Surveys 50, 3
(2017), 1–40.

[77] Oleh Yuschuk. 2022. OllyDbg. https://www.ollydbg.de/. Online (last accessed
Nov. 1, 2022).

[78] Lan Zhang, Peng Liu, Yoonho Choi, and Ping Chen. 2022. Semantics-preserving
Reinforcement Learning Attack Against Graph Neural Networks for Malware
Detection. IEEE Transactions on Dependable and Secure Computing (2022).

A APPENDIX OF THE IMPLEMENTATION

DETAILS OF MCTS

A.1 Algorithm of Selecting the Best Child

Algorithm 2 shows the procedure of Selection. As the possible
paths in the MCTS game tree is infinite, exploring all the nodes will
substantially increase the computational overhead. By employing
the Upper Confidence Bounds algorithm [14], procedure Selection

selects the child of MCTS node 𝑣 with the highest score considering
the trade off between the visit times and the reward (line 4-6). The
selected child node is regarded as the most "promising" node and
will be explored.

Algorithm 2: Procedure of Selection.
Input :MCTS node 𝑣.
Output :Selected child node 𝑣𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 of 𝑣.

1 Procedure Selection(𝑣)
2 𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒 ← 0;
3 for 𝑣𝑐ℎ𝑖𝑙𝑑 in children of 𝑣 do
4 𝑒𝑥𝑝𝑙𝑜𝑖𝑡 ← 𝑣𝑐ℎ𝑖𝑙𝑑 .𝑟𝑒𝑤𝑎𝑟𝑑/𝑣𝑐ℎ𝑖𝑙𝑑 .𝑣𝑖𝑠𝑖𝑡𝑠 ;
5 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 ←

√︁
2 ln(𝑣.𝑣𝑖𝑠𝑖𝑡𝑠)/𝑣𝑐ℎ𝑖𝑙𝑑 .𝑣𝑖𝑠𝑖𝑡𝑠 ;

6 𝑠𝑐𝑜𝑟𝑒 ← 𝑒𝑥𝑝𝑙𝑜𝑖𝑡 + 𝜆 × 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 ;
7 if𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒 < 𝑠𝑐𝑜𝑟𝑒 then

8 𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒 ← 𝑠𝑐𝑜𝑟𝑒 ;
9 𝑣𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ← 𝑣𝑐ℎ𝑖𝑙𝑑 ;

10 end

11 end

12 return 𝑣𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 .

A.2 Algorithm of Simulation

Algorithm 3 shows the procedure of Simulation, which finally
returns the reward 𝑟 . Based on the selected MCTS node 𝑣𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ,
this procedure iteratively expands the MCTS game tree until the
simulation number 𝑆 is reached (line 3-7). In each iteration, the
corresponding CFG representation 𝑥 of the expanded node is input
to the target malware detection system 𝑓 , and the reward 𝑟 will be
calculated as 𝑟 = 1− 𝑓 (𝑥) (line 5). After the procedure is terminated,
it returns the reward 𝑟 .

Algorithm 3: Procedure of Simulation.
Input :The selected node 𝑣𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 , target malware detection

system 𝑓 , simulation number 𝑆 .
Output :Reward 𝑟 .

1 Procedure Simulation(𝑣𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 , 𝑓 , 𝑆)
2 𝑣′ ← 𝑣𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ;
3 for 𝑖 ← 1 to 𝑆 do

4 𝑣′ ← Expansion(𝑣′) ;
5 𝑥 ← 𝑣′ .𝑥 ;
6 𝑟 ← 1 − 𝑓 (𝑥) ;
7 end

8 return 𝑟 .

B APPENDIX OF THE IMPLEMENTATION

DETAILS OF MALWARE RECONSTRUCTION

B.1 Algorithm of Adding a New Section

Algorithm 4 shows the procedure of adding a new section. The size
Δ
𝑎𝑙𝑖𝑔𝑛
𝑛𝑒𝑤 of the new section is computed in line 2-9, where Δ𝑛𝑒𝑤 is

total size of all the instructions in all V𝑚𝑖𝑑 (as discussed in § 3.5.1).
Let 𝐴𝑙𝑎𝑠𝑡 and 𝑆𝑙𝑎𝑠𝑡 represent the address and size of the last sec-
tion, respectively. The starting address of the new section can be

https://www.microsoft.com/en-us/security/blog/2017/08/03/windows-defender-atp-machine-learning-detecting-new-and-unusual-breach-activity/
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://lief-project.github.io/
https://lief-project.github.io/
https://www.pcmag.com/picks/the-best-antivirus-protection
https://www.pcmag.com/picks/the-best-antivirus-protection
https://cuckoosandbox.org/
https://upx.github.io/
https://upx.github.io/
https://www.virustotal.com/gui/contact-us
https://www.ollydbg.de/

MalGuise: Generating Practical Adversarial Malware against Learning-based Windows Malware Detection ACM CCS 2023, Nov. 26–30, 2023, Copenhagen, Denmark

computed as 𝐴𝑛𝑒𝑤 = 𝐴𝑙𝑎𝑠𝑡 +RoundUp(𝑆𝑙𝑎𝑠𝑡 , 𝑝𝑎𝑔𝑒_𝑠𝑖𝑧𝑒) (line 10-11),
where 𝐴𝑙𝑎𝑠𝑡 and 𝑆𝑙𝑎𝑠𝑡 can be both obtained from the header in-
formation of the malware, and 𝑝𝑎𝑔𝑒_𝑠𝑖𝑧𝑒 represents architecture’s
page size. After adding a new entry to the section table and adjust-
ing the PE header (such as modifying the "number of sections" and
"size of image", etc), the new section is successfully added to the
malware. After the new section is added, procedure AddSection
returns the starting address 𝐴𝑛𝑒𝑤 of the new section.

Algorithm 4: Procedure of adding a new section.
Input :Original malware 𝑧, sequence of the transformations T.
Output :Address of the new section 𝐴𝑛𝑒𝑤 .

1 Procedure AddSection(𝑧,T)
2 Δ𝑛𝑒𝑤 ← 0 ;
3 for 𝑘 ← 1 to 𝑛 do

4 Δ𝑛𝑒𝑤 ← Δ𝑛𝑒𝑤 + GetSize(I𝑠𝑒𝑚𝑛𝑜𝑝𝑠

𝑘
) ;

5 Δ𝑛𝑒𝑤 ← Δ𝑛𝑒𝑤 + GetSize(I𝑐𝑎𝑙𝑙𝑘
) ;

6 I
𝑗𝑚𝑝

𝑘
← jmp␣[𝐴𝑐𝑎𝑙𝑙

𝑘
+ GetSize(I𝑐𝑎𝑙𝑙

𝑘
)];

7 Δ𝑛𝑒𝑤 ← Δ𝑛𝑒𝑤 + GetSize(I𝑗𝑚𝑝

𝑘
) ;

8 end

9 Δ
𝑎𝑙𝑖𝑔𝑛
𝑛𝑒𝑤 ← RoundUp(Δ𝑛𝑒𝑤 , 𝑝𝑎𝑔𝑒_𝑠𝑖𝑧𝑒) ;

10 Obtain the address 𝐴𝑙𝑎𝑠𝑡 and the content size 𝑆𝑙𝑎𝑠𝑡 of the last
section from the PE header.;

11 𝐴𝑛𝑒𝑤 ← 𝐴𝑙𝑎𝑠𝑡 + RoundUp(𝑆𝑙𝑎𝑠𝑡 , 𝑝𝑎𝑔𝑒_𝑠𝑖𝑧𝑒) ;
12 Add an entry to section table;
13 Adjust the PE header;
14 return 𝐴𝑛𝑒𝑤 .

B.2 Algorithm of Windows Malware

Reconstruction

Algorithm 5 shows the procedure of Windows malware reconstruc-
tion. After adding a new section (line 2), the transformations will
be iteratively applied to the malware (line 4-14), thus generating
an adversarial one. In the 𝑘-th iteration, the call instruction I𝑐𝑎𝑙𝑙

𝑘
is first replaced with the jmp instruction “jmp␣[Anew

k
]” that trans-

fers control to the address 𝐴𝑛𝑒𝑤
𝑘

in the new section (line 5-6). The
instruction at address 𝐴𝑛𝑒𝑤

𝑘
will be set to the call instruction I𝑐𝑎𝑙𝑙

𝑘
,

followed by which is the semantic nops I𝑠𝑒𝑚𝑛𝑜𝑝𝑠

𝑘
and the jmp in-

struction “jmp␣[𝐴𝑐𝑎𝑙𝑙
𝑘
+GetSize(I𝑐𝑎𝑙𝑙

𝑘
)]” that transfers control back

to the next instruction of I𝑐𝑎𝑙𝑙
𝑘

in the original section (line 7-12).
After all the 𝑁 transformations are applied to the malware, the
adversarial one 𝑧𝑎𝑑𝑣 is generated.

C DETAILS OF IMPLEMENTATIONS AND

HYPER-PARAMETERS

C.1 Evaluation Metrics of Learning-based

Windows Malware Detection.

The metrics for evaluating the performance of learning-based win-
dows malware detection are introduced as follows.

1) Area under the curve (AUC) [13] represents the overall per-
formance of the binary classification model. This metric is defined
as the area under the entire ROC curve [13] and is independent of

Algorithm 5: Reconstruction of Windows malware.
Input :original malware 𝑧, sequence of the transformations

T = {𝑇1,𝑇2, ...,𝑇𝑁 }.
Output :adversarial malware 𝑧𝑎𝑑𝑣 .

1 Begin

2 𝐴𝑛𝑒𝑤 ← AddSection(𝑧,T) ;
3 𝐴𝑛𝑒𝑤

1 ← 𝐴𝑛𝑒𝑤 ;
4 for 𝑘 ← 1 to 𝑛 do

5 Get the address 𝐴𝑐𝑎𝑙𝑙
𝑘

of the call instruction I𝑐𝑎𝑙𝑙
𝑘

;
6 Patch(𝑧,𝐴𝑐𝑎𝑙𝑙

𝑘
, jmp␣[𝐴𝑛𝑒𝑤

𝑘
]) ;

7 Patch(𝑧,𝐴𝑛𝑒𝑤
𝑘

, I𝑐𝑎𝑙𝑙
𝑘
) ;

8 𝐴𝑛𝑒𝑤
𝑘
← 𝐴𝑛𝑒𝑤

𝑘
+ GetSize(I𝑐𝑎𝑙𝑙

𝑘
) ;

9 Patch(𝑧,𝐴𝑛𝑒𝑤
𝑘

, I
𝑠𝑒𝑚𝑛𝑜𝑝𝑠

𝑘
) ;

10 𝐴𝑛𝑒𝑤
𝑘
← 𝐴𝑛𝑒𝑤

𝑘
+ GetSize(I𝑠𝑒𝑚𝑛𝑜𝑝𝑠

𝑘
) ;

11 I
𝑗𝑚𝑝

𝑘
← jmp␣[𝐴𝑐𝑎𝑙𝑙

𝑘
+ GetSize(I𝑐𝑎𝑙𝑙

𝑘
)] ;

12 Patch(𝑧,𝐴𝑛𝑒𝑤
𝑘

, I
𝑗𝑚𝑝

𝑘
) ;

13 𝐴𝑛𝑒𝑤
𝑘+1 ← 𝐴𝑛𝑒𝑤

𝑘
+ GetSize(I𝑗𝑚𝑝

𝑘
) ;

14 end

15 𝑧𝑎𝑑𝑣 ← 𝑧;
16 return 𝑧𝑎𝑑𝑣 .

the chosen detection threshold. A higher value of AUC indicates a
better performance of the malware detection.

2) True positive rate (TPR) / false positive rate (FPR) [13]
and balanced accuracy (bACC) [71] are commonly used metrics
to evaluate the effectiveness of the malware detector. Under the
same value of false positive rate (FPR), the higher the value of TPR
or bACC, the more effective the detector is in detecting malicious
samples. In the experiment, the values of FPR are set to be 1%
and 0.1%, and the corresponding two detection thresholds are then
calculated. Given the calculated detection threshold, the values of
TPR and bACC are computed as follows.

𝑇𝑃𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)
𝑇𝑁𝑅 = 𝑇𝑁 /(𝐹𝑃 +𝑇𝑁)
𝑏𝐴𝐶𝐶 = (𝑇𝑁𝑅 +𝑇𝑃𝑅)/2

(11)

Where 𝐹𝑃𝑅 = 𝐹𝑃/(𝐹𝑃 +𝑇𝑁), and𝑇𝑁, 𝐹𝑁,𝑇𝑃, 𝐹𝑃 denote the num-
ber of true negative, false negative, true positive, and false positive,
respectively.

C.2 Implementations and Hyper-parameters

Details of Baseline Adversarial Attacks.

In this section, the implementations and hyper-parameters details of
the two baseline adversarial attacks, i.e. Malware Makeover (MMO)
[50] and SRL [78] is elaborated. In principle, we follow the same
experimental settings as the baseline attacks in their original pa-
pers In the experiment, 5,000 Windows malwares are randomly
selected from the testing dataset to evaluate the effectiveness of
the two baseline attacks. MMO is implemented to attack the three
learning-based malware detection models mentioned in § 4.1.2, the
experiment is conducted in the white box setting, where the maxi-
mum number of iterations is set to be 200, and the increment of the
malware’s size is limited to 5% of the size of the original malware,
which is the same experiment setup as in [50]. SRL is implemented
to attack the two GNN based model: MalGraph and Magic. The

ACM CCS 2023, Nov. 26–30, 2023, Copenhagen, Denmark Anonym, et al.

reason why MalConv is not used to evaluate SRL is that, SRL is
designed for attacking the GNN based model whose input is the
extracted ACFGs of executables, it can not be applied to attack
MalConv model that takes the raw bytes as the input. Moreover,
the same experiment setup as in [78] is used, where the maximum
number of iterations, the injection budget, and the modified basic
blocks are set to be 30, 5%, and 1250, respectively.

D APPENDIX OF EVALUATION RESULTS AND

ANALYSIS

D.1 Ablation Study of the Size of Semantic nops

for MalGuise

The impact of the size of the injected semantic nops on the per-
formance of MalGuise is illustrated in Figure 10, where the three
learning-based models are all at 1% FPR. The thresholds of the size
of the injected semantic nops are set to be 1%, 3%, 5%, 7% and 9%
of the original malware’s size. Note that, the section alignment
(𝑝𝑎𝑔𝑒_𝑠𝑖𝑧𝑒) of a Windows executable is 4096 bytes in Intel x86 ar-
chitecture, which means the size of the new section containing
the injected semantic nops must be a multiple of 4096 bytes [56].
In the experiment, the two cases where the threshold is rounded
up and the threshold is not rounded up are both considered. In
Figure 10(a), the threshold is rounded up to a multiple of 4096 bytes,
while in Figure 10(b), the threshold is not rounded up. From Figure
10(a), it can be observed that, when the threshold is rounded up,
the values of ASR obtained by MalGuise for MalGraph and Magic
are always in a high level (higher than 97%) with the increase of
the threshold. As shown in Figure 10(b), when the threshold is
not rounded up, with the increase of the threshold from 1% to 9%,
the ASRs achieved by MalGuise against MalGraph gradually rises
from 81.99% to 95.64%, and the ASRs of MalGuise against Magic
also increases from 90.26% to 98.99%. For MalConv, when all the
semantic nops are implemented, the performance of MalGuise is
inferior and unstable as it can only obtain an ASR near 36%. It can
be explained that, most of the inserted semantic nops have little
impact on the prediction results of MalConv. To improve the ef-
ficiency of MalGuise against MalConv, 25 semantic nops that are
most frequently used by MalGuise are selected. As shown in Figure
10, when inserting only the selected 25 semantic nops, MalGuise
offers excellent performance as the achieved ASR is higher than
96% even when the size of semantic nops is only 1% of the original
malware’s size. The result indicates that, the effectiveness of Mal-
Guise against MalConv is highly dependent on the implemented
semantic nops, and it’s important to search for a few semantic nops
that cause significant degradation in the detection performance of
MalConv. In the rest of this paper, MalGuise only implements the
selected 25 semantic nops for MalConv.

In addition, the experiment is conducted when the threshold of
the size of the semantic nops takes the values of 𝑛 × 4096, where
the values of 𝑛 are set to be 1, 2, 3, 4, 5. The experimental results are
presented in Table 6, and the three learning based models are all at
1% FPR. It can be seen that, that values of ASR attained by MalGuise
are as high as 97.61%, 99.20% and 97.53% for MalGraph, Magic and
MalConv, respectively. Even when 𝑛 = 1, the ASRs of MalGuise
are still higher than 90% against the three models. Moreover, when
MalGuise is implemented to attack the Magic model, the obtained

ASRs of MalGuise are always higher than 99% with the increase
of 𝑛. The above experimental results indicate that, MalGuise can
effectively deceive the learning-based models with a small size of
the injected semantic nops.

Table 6: The attack success rates (ASRs) of MalGuise when

the threshold of the size of semantic nops takes the value of

𝑛 × 4096.
Models (FPR=1%) 𝑛 = 1 𝑛 = 2 𝑛 = 3 𝑛 = 4 𝑛 = 5

MalGraph 96.31% 97.49% 97.60% 97.54% 97.61%
Magic 99.16% 99.15% 99.17% 99.17% 99.20%

MalConv 91.56% 96.34% 97.33% 97.48% 97.53%

D.2 The Detailed Reasons Why Adversarial

Malware Generated by MalGuise cannot

Preserve the Original Semantics

To explain why some malware samples can not keep their seman-
tics after being modified by MalGuise, the malware samples with
broken functionalities are analyzed manually via IDA Pro [28] and
OllyDbg [77]. There are two main reasons for the dysfunction of
the adversarial malware samples. The first reason is the malware
sample contains overlay, which is the extra data that is not cov-
ered by the PE header. In the execution process of the malware,
the overlay will be extracted to perform the malicious behavior.
After adding a new section to the malware, the extraction of the
overlay may be affected, thus influences the execution process of
the malware. The second reason is the malware sample contains
junk code, which is used for anti-disassembly [31]. Specifically,
when the call instruction is executed, the return address of the
call instruction will be pushed into the stack. After the execution
of the call instruction, the return address that is pushed into the
stack will be removed from the stack. In this case, when MalGuise
is implemented, the return address of the call instruction will be
changed, and the changed address will be pushed into the stack
and removed from the stack. Thus, the stack will not be affected.
However, if the malware contains junk code, the changed address
will not be removed from the stack, which will affect the execution
process of the malware and break its functionality.

D.3 Appendix of Evaluations of MalGuise

against Real-world Anti-virus Products.

The impact of the inserted semantic nops on the performance of
MalGuise is further explored. We select 25 semantic nops that are
most frequently used by MalGuise when attacking the real-world
anti-virus products. Figure 11 illustrates the occurrence frequency
of the opcodes of the selected 25 semantic nops. As shown in Figure
11, xchg, mov, test, push/pop, add/sub, test and add/sub are the
most effective opcodes for deceiving McAfee, Microsoft Defender
ATP, ClamAV, Comodo, Avast, AVG and Kaspersky, respectively.
Furthermore, when using only the selected 25 semantic nops, the
ASRs of MalGuise are presented in Table 5. It can be observed that,
the selection of the semantic nops leads to improvement in the per-
formance of MalGuise for all the anti-virus products except Avast.
Especially for McAfee, Microsoft Defender ATP and Kaspersky, the

MalGuise: Generating Practical Adversarial Malware against Learning-based Windows Malware Detection ACM CCS 2023, Nov. 26–30, 2023, Copenhagen, Denmark

1% 3% 5% 7% 9%
Threshold

25
50
75

100

AS
R(

%
)

97
.1

5

97
.2

9

97
.4

7

97
.4

8

97
.4

6

99
.2

5

99
.1

8

99
.2

9

99
.1

5

99
.2

9

96
.6

2

97
.3

5

97
.7

6

98
.5

1

97
.7

6

36
.1

7

33
.9

6

34
.3

6

35
.5

36
.4

5

Threshold is rounded up
MalGraph
Magic

MalConv (selected semantic nops)
MalConv (all semantic nops)

(a)

1% 3% 5% 7% 9%
Threshold

25
50
75

100

AS
R(

%
)

81
.9

9

91
.9

4

93
.9

3

95
.0

9

95
.6

4

90
.2

6

97
.0

4

98
.1

7

98
.6

7

98
.9

9

96
.8

3

97
.6

5

97
.7

97
.5

96
.3

9

35
.3

8

35
.2

34
.3

3

33
.9

3

32
.8

3

Threshold is not rounded up
MalGraph
Magic

MalConv (selected semantic nops)
MalConv (all semantic nops)

(b)

Figure 10: Impact of the size of the injected semantic nops on the performance of MalGuise. In Figure 10(a), the threshold will

be rounded up to a multiple of 4096 bytes, while in Figure 10(b), the threshold will not be rounded up.

ASRs of MalGuise increased by 3.68%, 4.34% and 2.07%, respectively.
In practice, an undetected malware sample can cause great dam-
age to the computer system. Overall, above experimental results
demonstrate the effectiveness of MalGuise against the anti-virus
products deployed in the real world.

Mcafee
Microsoft

ClamAv
Comodo

Avast Avg Kaspersky

add/sub
push/pop

xchg
xor
mov

dec/inc
test
and
cmp

bswap
or

10.7% 7.3% 15.1% 0.0% 20.9% 10.9% 19.4%

13.9% 11.8% 16.4% 20.5% 9.1% 3.4% 6.8%

19.3% 4.7% 13.5% 7.5% 10.4% 12.1% 3.3%

7.1% 7.5% 3.8% 16.3% 8.8% 12.4% 6.3%

10.2% 19.0% 7.4% 18.5% 6.9% 7.6% 0.0%

4.5% 3.9% 11.8% 4.9% 15.2% 9.0% 10.1%

7.1% 3.7% 16.5% 8.2% 3.3% 15.8% 7.8%

7.5% 8.1% 8.0% 3.6% 10.8% 12.0% 4.5%

0.0% 9.2% 0.0% 11.4% 0.0% 0.0% 14.0%

7.3% 7.2% 4.3% 4.5% 3.2% 8.3% 19.4%

12.4% 17.7% 3.4% 4.5% 11.3% 8.4% 8.3%
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Figure 11: The occurrence frequency of the opcodes of the

top 25 semantic nops that lead to evasion against real-world

anti-virus products.

Impact of the Number of Modified Blocks. The distribution of
the number of modified blocks in the adversarial malware samples
that evade the anti-virus products is illustrated in Figure 12. As
shown in Figure 12, for all the seven anti-virus products, the num-
ber of modified blocks in the adversarial malware samples are less
than 6. Especially for McAfee, ClamAV and Comodo, more than
90% of the malware samples that successfully evade the three prod-
ucts have only one block modified (95%, 98% and 94% for McAfee,
ClamAV and Comodo, respectively). In conclusion, MalGuise can
be applied against the anti-virus products by modifying a small
number of basic blocks.

ACM CCS 2023, Nov. 26–30, 2023, Copenhagen, Denmark Anonym, et al.

1 2 3 4 5
Number of modified blocks

0.00
0.25
0.50
0.75
1.00

Fr
eq

ue
nc

y

0.95

0.05 <0.01

Mcafee

(a)

1 2 3 4 5
Number of modified blocks

0.00
0.25
0.50
0.75
1.00

Fr
eq

ue
nc

y

0.38 0.43

0.17
0.01 <0.01

Microsoft

(b)

1 2 3 4 5
Number of modified blocks

0.00
0.25
0.50
0.75
1.00

Fr
eq

ue
nc

y

0.98

0.02 <0.01

ClamAv

(c)

1 2 3 4 5
Number of modified blocks

0.00
0.25
0.50
0.75
1.00

Fr
eq

ue
nc

y

0.94

0.05 0.01

Comodo

(d)

1 2 3 4 5
Number of modified blocks

0.00
0.25
0.50
0.75
1.00

Fr
eq

ue
nc

y 0.68

0.22
0.08 0.02

Avast

(e)

1 2 3 4 5
Number of modified blocks

0.00
0.25
0.50
0.75
1.00

Fr
eq

ue
nc

y

0.66

0.23
0.11

Avg

(f)

1 2 3 4 5
Number of modified blocks

0.00
0.25
0.50
0.75
1.00

Fr
eq

ue
nc

y

0.88

0.10 0.02

Kaspersky

(g)

Figure 12: The distribution of the number of modified blocks for the malware samples that evade the anti-virus products.

	Abstract
	1 Introduction
	2 Preliminaries & Threat Model
	2.1 Preliminaries on Learning-based Malware Detection Systems
	2.2 Threat Model

	3 Design of MalGuise
	3.1 Problem Formulation
	3.2 Overview of MalGuise Framework
	3.3 Adversarial Transformation Preparation
	3.4 MCTS Guided Searching
	3.5 Malware Reconstruction

	4 Evaluation
	4.1 Evaluation Setup
	4.2 Evaluation Results & Analysis

	5 Discussion
	5.1 Potential Defenses
	5.2 Related Work

	6 Conclusion
	References
	A Appendix of the implementation details of MCTS
	A.1 Algorithm of Selecting the Best Child
	A.2 Algorithm of Simulation

	B Appendix of the implementation details of malware reconstruction
	B.1 Algorithm of Adding a New Section
	B.2 Algorithm of Windows Malware Reconstruction

	C Details of Implementations and Hyper-parameters
	C.1 Evaluation Metrics of Learning-based Windows Malware Detection.
	C.2 Implementations and Hyper-parameters Details of Baseline Adversarial Attacks.

	D Appendix of evaluation results and analysis
	D.1 Ablation Study of the Size of Semantic nops for MalGuise
	D.2 The Detailed Reasons Why Adversarial Malware Generated by MalGuise cannot Preserve the Original Semantics
	D.3 Appendix of Evaluations of MalGuise against Real-world Anti-virus Products.

