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ABSTRACT

Many studies have proposed machine-learning (ML) models for mal-
ware detection and classification, reporting an almost-perfect per-
formance. However, they assemble ground-truth in different ways,
use diverse static- and dynamic-analysis techniques for feature ex-
traction, and even differ on what they consider a malware family. As
a consequence, our community still lacks an understanding of mal-
ware classification results: whether they are tied to the nature and
distribution of the collected dataset, to what extent the number of
families and samples in the training dataset influence performance,
and how well static and dynamic features complement each other.

This work sheds light on those open questions by investigating
the key factors influencing ML-based malware detection and clas-
sification. For this, we collect the largest balanced malware dataset
so far with 67K samples from 670 families (100 samples each), and
train state-of-the-art models for malware detection and family clas-
sification using our dataset. Our results reveal that static features
perform better than dynamic features, and that combining both only
provides marginal improvement over static features. We discover no
correlation between packing and classification accuracy, and that
missing behaviors in dynamically-extracted features highly penalise
their performance. We also demonstrate how a larger number of
families to classify makes the classification harder, while a higher
number of samples per family increases accuracy. Finally, we find
that models trained on a uniform distribution of samples per family
better generalize on unseen data.

1 INTRODUCTION

Modern Windows malware analysis has to cope with a large num-
ber of samples that have been steadily increasing for two decades.
In 2022, both the AV-TEST Institute and Kaspersky registered over
400,000 new malicious programs daily [19, 25]. In order to counter
such numbers, research and industry have begun to rely on Machine
Learning (ML)-driven malware classification models. They can be
applied over a large number of files and offer more flexible classi-
fication mechanisms than signature-based methods. Nevertheless,
they have to contend with human attackers’ imagination, which
consistently produces new variants to fly under the radar. At their
core, ML techniques capture the statistical correlation between train-
ing data and classification targets. As a result, such statistics-based
classification models lose their effectiveness when going beyond the
knowledge encoded in the training data. Human attackers aware of
this limitation can thus always be one step ahead to choose attacks
unseen in the training data, in order to evade the detection of ML-
based methods. Moreover, ML-based classification models are often
performed in a pipeline [17, 30, 56]. For example, given a suspicious
file, a typical ML pipeline should first figure out whether it is mali-
cious (binary classification), and then find out whether it belongs to a

known family (family classification). Even though these classification
tasks achieve high accuracy in previous literature [17, 30, 56], most
of these works have been carried out with unrealistic assumptions,
mainly because of how the dataset was constructed.

In addition, a ground-truth of malware families is hard to obtain.
Antivirus companies will not likely use the same name for the same
family. Although the CARO (Computer Antivirus Research Orga-
nization) naming convention has been proposed to mitigate this
issue, it still faces usage obstacles. Scientific research tackled this
problem and produced AVClass [49]: given a list of AV labels (e.g.,
from a VirusTotal JSON report), the tool returns the single most likely
family name. However, even if AVClass returns a single family name
according to a consensus algorithm by default, it can also output a
ranking of all alternative family names. Thus, the problem is that
AVClass is often used to carry out studies using its default output
as ground truth, even though it is probabilistic in nature.

Moreover, while it is straightforward to collect a high number
of samples for popular families, collecting a large diverse malware
dataset remains difficult and time-consuming [8, 27, 37, 51]. In this
work, we collect PE malware executables from the VirusTotal (VT)
feed [55], a real-time stream of JSON-encoded reports of samples
submitted to VirusTotal. Despite the appearance of more than 44M
VT reports over a period of nearly three months and the collection
of 227k samples from 13.8k families, only 780 malware families of
those contain at least 100 samples.

To further complicate the matter, malware authors often use off-
the-shelf packers and protectors [32, 34]. Both modify a program to
hinder its analysis while still preserving its original behavior. Based
on their design, different malware that undergo the packing or pro-
tection procedures may generate executables that share a highly
similar structure. This easily makes a ML classifier trained over these
malware samples overfit the packed or protected file structure, rather
than capturing its true malicious component.

Therefore, in this work, we put considerable effort to create four
heterogeneous datasets for a total of 118,111 samples to perform a
large-scale measurement study. Three of them are composed of mali-
cious samples with varying numbers of families, while the fourth con-
tains benign samples. We devoted particular attention during the con-
struction of the datasets, trying both to reproduce the datasets usually
used in research, but also considering real-world scenarios typical of
malware analysis. Such datasets allowed us to create well-controlled
experiments for studying how the effectiveness of ML-based binary
and family classification change under different testing scenarios.

Finally, there is also another crucial aspect that influences ML
algorithms that we further explored: feature extraction. The meth-
ods by which one can analyze executable files fall into two main
categories, depending on what facets one wants to study, namely
static properties and dynamic behavior; nonetheless, the previous
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Table 1: Dataset summary

Dataset Samples | Families
Malware Balanced (Mp) 67,000 670
Benign (B) 16,611 -
Malware Unbalanced (M) 18,000 1,500
Malware Generic (Mg) 16,500 -
All 118,111 -

two can also be combined. Since we wanted to study existing ML
state-of-the-art solutions and not design new ones, we build our
static and dynamic feature extraction approaches on what was de-
scribed in recent papers [7, 9]. Therefore, this means that we have
statically analyzed and dynamically executed in a sandbox more
than a hundred thousand samples used in this study.

With this in mind, our work aims to contribute by answering the
following research questions, in both binary and family classification
tasks.

(R1) How do static, dynamic, and combined models perform
on different malware families/classes in binary and family
classification?

(R2) Do missing feature values in the run-time behaviors
negatively impact the classification results?

(R3) Does the presence of off-the-shelf packers and protectors
bring harm to classification accuracy?

(R4)Isthe AVClass2 confidence score correlated with ML-based
decisions?

(R5) What is the contribution of static and dynamic feature
classes to the classification performance and does their con-
tribution change when joining the two sets?

(R6) On which families and classes of malware does each
model fail to produce accurate classification?

(R7) How does the training dataset construction strategy af-
fect the model performance?

(R8) How does the ML-driven malware classifier perform over
the families unseen in the training data?

2 DATASET COLLECTION

To conduct our experiments we collected 118,111 Windows PE32
executables, divided in four datasets, as summarized in Table 1. This
section describes the process for building those datasets.

2.1 Malware Samples

We collect PE malware executables from the VirusTotal (VT) feed [55].
The VT feed is a real-time stream of JSON-encoded reports. Each
report contains the analysis results of a sample submitted to Virus-
Total - including file hashes, filetype, size, and the detection labels
assigned by a large number of antivirus (AV) engines. These reports
are generated both by new samples submitted by VT users, as well as
by user-requested re-analysis of files already known to VT. Samples
in the feed can be of various filetypes (e.g., PE, APK, PDF), but our
collection focuses on Windows PE executables. Samples that appear
in the feed can be downloaded within 7 days from the moment they
appear in the feed.

We want our dataset to be as diverse as possible in terms of num-
ber of families, but also to be balanced, so that no malware family

is over-represented or under-represented. Our initial target was to
collect 1,000 malware families with a hundred samples each. The
threshold of 100 samples per family was chosen to have enough sam-
ples per family for performing multi-class classification experiments,
taking into account that samples are split into 60% training, 20% val-
idation, and 20% testing. However, due to the collection, filtering,
and reclassification process described below, we ended up with 670
families satisfying that threshold, as shown in Table 1.

To the best of our knowledge, this is the most diverse labeled mal-
ware dataset in terms of families to date. The most recent dataset was
Motif [22] with 454 families. While the number of families in Motif is
also large, it is 21 times smaller than our balanced dataset with 3,095
samples, and is unbalanced with a median of 3 samples per family
and a standard deviation of 10.4. Only one family in Motif reaches
100 samples and 29% of the families have only one sample. Such
small number of samples for most families does not allow building
an accurate multi-class classifier, as we will show in our evaluation.
Initial collection from VT feed. We collected reports and samples
from the VT feed for 82 non-consecutive days between August 2021
and March 2022. We only retained reports of samples detected by at
least one AV engine, and with a trID [39] filetype identification field
(available in the report) equal to ‘32-bit non-installer PE executable’.
We excluded 64-bit PE executables, dynamic-link libraries (DLLs),
and executables generated by popular installer software (e.g., NSIS,
InnoSetup). These restrictions are placed by our dynamic analysis
sandbox, described in Section 3.2, which currently does not support
running 64-bit PE executables or DLLs, and does not interact with
GUIs in order to complete the installation of other programs. How-
ever, an analysis of the whole VT feed during the 82 collection days
shows that from all malicious PE samples in the feed, 87.6% are 32-bit
executables, 8.2% are DLLs (32-bit or 64-bit), 3.9% are 64-bit executa-
bles, and the remaining 0.3% are other PE types (e.g., OCX, CPL, SCR).

The retained reports are fed to the AVClass2 malware labeling
tool [49], which outputs the most likely family name for the sample
as well as a confidence factor that captures the number of AV engines
assigning that family to the sample (after removing duplicates due
to AV engines that copy each other). For each family reported by
AVClass2, our system downloaded 100 distinct samples. Each down-
loaded sample was then checked again to exclude any remaining
non-32-bit PE executables and installers that were missed by trID. In
particular, samples are removed if their PE header does not indicate
that it is 32-bit executable, or if they are detected as installers using
public Yara rules by Avast [6]. As stated, our initial target was to col-
lect 1,000 malware families with 100 samples each. However, when
this target was reached, many other families had been collected with
less than 100 samples, resulting in an initial dataset of 239,417 PE32
malware samples from 23,555 families.

Reclassification and family filtering. The AV labels of a sample
may change over time as AV vendors refine their detection rules.
These label changes may in turn change the family that AVClass2
outputs for a sample. To account for such changes, we re-collect
the updated VT report for our samples 54 days after the end of
our collection process, and feed the new reports to AVClass2 to
obtain the (possibly) updated family. From the 239,417 samples,
9.7% (23,171) were at this point re-classified as a different family.
AVClass2 uses a taxonomy to identify a wide range of non-family
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tokens that may appear in the AV labels. These include file proper-
ties (e.g., FILE:packed:asprotect, FILE:exploit: gingerbreak), malware
classes (e.g., CLASS:virus, CLASS:worm), behaviors (e.g., BEH:ddos,

BEH:filedelete), and generic tokens (e.g., GEN:malicious, GEN:behaveslike).

However, the AVClass2 taxonomy is assumed to be incomplete by de-
sign [49]. Thus, it may output a label for a sample that does not corre-
spond to areal family, but rather to a previously unknown instance of
the above categories. To address thisissue, we manually inspected the
collected family labels and conservatively filtered out any labels that
may not correspond to real family names. This step identified 86 likely
non-family tokens not in the AVClass2 taxonomy, such as gametool,
testsample, nsismod, dllinject, and processhijack. We also removed
all random-looking labels (e.g., 005376ae) that AVClass2 fails to auto-
matically identify. As byproduct of our effort, we will contribute our
extended AVClass2 taxonomy to the open-source AVClass2 project.

After reclassification and family filtering, the dataset contained
227,296 samples from 13,894 families, out of which 780 families had
at least 100 samples.

Despite collecting more than 44M VT reports over a period of
nearly 3 months, we were unable to reach our goal of 1,000 families
with 100 samples. In fact, out of over 14K families that appeared
in the VT feed, very few included a significant number of unique
samples, making the collection of a diverse malware dataset difficult
and time-consuming.

Feature filtering. We performed static and dynamic feature extrac-
tion (as detailed in Section 3) for all samples of the 780 families with
at least 100 samples. This required to execute each sample in a sand-
box to obtain a behavioral report. We then excluded samples with
feature extraction errors, e.g., those that did not exhibit any runtime
behavior, and sub-sampled families to keep only 100 samples each.
The result is a balanced dataset (hereinafter Mp) that contains 67,000
samples from 670 families. According to AVClass2, those families
belong to 13 malware classes: 36% (282) of the families are classified
as grayware (including its adware subclass), 15% (120) as download-
ers, 11% (87) as worms, 10% (78) as backdoors, 5% (41) as viruses, and
the remaining 23% (62) includes ransomware, rogueware, spyware,
miners, hacking tools, clickers, and dialers.

Dataset statistics. Over 93% of the samples in the Mp dataset are
detected by at least 20 AV engines, while only 0.3% have a VT score
less or equal to 3. It is worth noting that the minimum number of
detections for samples in the dataset is two since AVClass2 requires
at least two AV engines to assign a label to a sample.

Samples on the VT feed can be new (i.e., collected and scanned for
the very first time by VT) or resubmitted (i.e., first submitted in the
past but re-scanned on the day they were collected). We compute
the freshness of samples in the Mp dataset as the number of days
between a sample’s collection date and its VT first seen date. We
observe that 53.4% of the samples were collected within a day of
being first observed by VT, 7.6% within a year, and 37.8% are old
samples first seen over one year before our study.

Packer and protector detection. To hamper analysis, malware
authors may use packers that compress a sample and de-compress
it at runtime, as well as more sophisticated protectors that may com-
bine different obfuscations such as packing, encryption, and code
virtualization. To evaluate the impact of packers and other protectors
on malware classification, we determine whether a sample uses an

off-the-shelf packer or protector by using the signature-based Detect
It Easy (DIE) [2] tool, as well as the well-maintained Yara rules of
Avast RetDec [6]. Overall, 22% of the samples in Mp use a packer
or protector. The most popular packer is upx detected on 14.0% the
samples, followed by aspack (3.2%) and pecompact (1.0%). The most
popular protectors are vmprotect (1.9%) and asprotect (0.4%).

2.2 Testing Datasets

We create two other disjoint malware datasets, which we use in
Section 4 to test the ability of ML classifiers to generalize beyond
the Mp dataset they were built upon. The first dataset, referred as
Malware Unbalanced (or Mg;) in Table 1, contains 18K samples from
1.5K families. These samples were part of the initial VT feed collec-
tion, passed the filtering and re-classification steps, but their families
never reached the threshold of 100 samples and thus were excluded
from Mp. All samples are detected by at least 20 AV engines and
none of the samples nor their families are part of Mp.

The second dataset, Malware Generic (Mg), contains 16.5K sam-
ples for which AVClass2 was unable to output a family, due to AV
engines using only generic labels. These samples were separately
collected from the VT feed between June 23rd and July 6th 2022 and
underwent the filtering steps to keep only 32-bit non-installer PE
executables. All samples are detected by at least 20 AV engines and
none of the samples are part of Mp.

2.3 Benign Samples

Building a benign dataset by just relying on the number of AV detec-
tions in the VT report is prone to errors due to the presence of mali-
cious files that are still unknown to AV engines. Therefore, we took
amore conservative strategy and decided to build a benign dataset
by using a fresh installation of all the community-maintained pack-
ages (which undergo a rigorous moderation review process to avoid
pollution) of Chocolatey [1] in a clean machine running Windows
10. After each package was installed, we extracted all the executable
files present on the hard disk, which may correspond to Windows
system files or third-party publishers.

We exclude files that are not 32-bit PE executables and those with
more than three detections on VT. This allowed us to discard bor-
derline cases, i.e., benign files with characteristics very similar to
malware, like hacking and scanning tools. Using this procedure we
collected a dataset B of 16,611 benign samples. The code signatures
of those samples indicate a large diversity of publishers with over
1.4K different signers — including both small companies and large
software publishers such as Microsoft, Oracle, and Google.

3 METHODOLOGY

Our work aims to answer the 5 research questions raised in Section 1.
These questions are all closely associated with the applicability of ML-
based malware detection (i.e., binary classification) and family clas-
sification (i.e., multi-class classification) in practice. Notably, we aim
to explore the performances of ML-driven malware classifiers that
use features extracted statically, dynamically, or a combination of
both with varied coverage of malware families and changed volumes
of training samples. It is worth noting that developing novel ML-
based malware classification models is beyond the scope of our study.
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Table 2: Feature classes used in the classifiers.

ID Class Extraction | Features
s-headers PE headers static 29
s-sections PE sections static 590
s-dll DLL imports static 131
s-imports APIimports static 3,732
s-bytegrams Byte n-grams static 13,000
s-opcodegrams | Opcodode n-grams | static 2,500
s-strings Strings static 10,402
s-file File Generic static 2
d-network Network activity dynamic 438
d-file File activity dynamic 60,555
d-mutex Mutexes used dynamic 7
d-registry Registry operations | dynamic 60
d-service Services activity dynamic 736
d-process Process activity dynamic 28,198
d-thread Thread actitivy dynamic 7

Instead, we focus on discussing and evaluating the analysed issues
using state-of-the-art ML models applied for malware classification.

3.1 Static Features

Hojjat et al. [7] performed a literature review to identify the static
features that carry the most useful information for binary classifica-
tion. We implement their feature extraction methodology to extract
the same classes of static features. However, the final number of
features in each class may differ as some include a feature selection
step that retains only the features that provide more information,
which is dependent on the training dataset.

The upper half of Table 2 summarizes the static feature classes
(prefixed by s-). The s-headers class captures 29 integer features from
the Optional and COFF headers of the executable [13]. The s-sections
class captures 590 Boolean features from the 32-bit characteristic field
of each section in the executable. The s-dll and s-imports capture 131
and 3,732 Boolean features, respectively, extracted from the import
table. s-dll features capture the imported libraries while s-imports
features capture the imported functions in those libraries. The s-
bytegrams class capture 4-grams, 5-grams, and 6-grams extracted
from the raw sequence of bytes of 1,000 randomly chosen files in our
dataset, and filtered to keep only the 13,000 n-gram values appearing
inmore than 1% of the samples and with higher information gain. The
s-opcodegrams class captures 3-grams and 4-grams built from the se-
quence of opcodes disassembled using Capstone [12] and filtered to
keep the top 2,500 n-gram values with higher information gain. The s-
strings class comprises of 10,402 Boolean features capturing strings of
atleast 4 characters that appear in over 1% of the files. Finally, the s-file
features capture the file size in bytes and the whole file Shannon en-
tropy [31]. We refer the interested reader to [7] for a more detailed de-
scription of the features and the works that originally proposed them.

3.2 Sandbox

We have built a sandbox for executing malware using the best prac-
tices proposed by previous works [32, 34, 44, 57]. We configured a
Windows 10 Pro 32-bit virtual machine (VM) with 2 CPUs (Intel Xeon
Platinum 8160 @ 2.10GHz) and 2 GiB of RAM. We installed popular

apps and populated the file system with common file types to resem-
ble a legitimate desktop workstation as suggested by Miramirkhani
et al. [34]. Malware runs on clones of this VM orchestrated using
Proxmox VE [5]. To improve performance, we stored all virtual
disk images and VM snapshots in a RAM disk. As recommended by
Rossow et al. [44], each machine runs on its own isolated local net-
work with full Internet access through an ADSL line of our institution
dedicated for this purpose. Recent works have measured that 40%—
80% of modern malware use at least one evasive technique [15, 32].
To limit the impact of such evasions, we base our analysis on the
Intel PIN-based JuanLesPIN tool [3, 32], which handles common
evasive techniques, thereby increasing the likelihood that malware
detonates. Unfortunately, it does not support 64-bit Windows exe-
cutables, so we focus on 32-bit malware. We modified JuanLesPIN
to monitor Windows APIs responsible for network, processes, ser-
vices, registry, mutexes, file system, and DLL loading. We tested our
analysis environment with the Al-Khaser [4] tool to confirm that
our sandbox could not be identified. To analyze sandbox detection
techniques that measure overhead [32] we executed 1,000 malware
samples randomly chosen among those that: (i) terminate the exe-
cution, (ii) use at least one evasive technique, and (iii) call at least 50
Windows API (a threshold proposed in [26] to determine whether a
sample has detonated). We measured their execution time with and
without instrumentation observing a percentage increase of =125,
0=31, min=26, med =106, max =206. This overhead is in line with
that in [32]. Kuechler et al. [26] recently showed that the amount of
code executed by malware samples plateaus after two minutes, and
little additional information can be obtained thereafter. We took a
conservative approach and ran each sample for up to five minutes.

3.3 Dynamic Features

We extract 7 classes of dynamic features from the API calls (including
their arguments) invoked by the malware during execution in the
sandbox. The features were chosen to cover those used in previous
works that built classifiers from malware executions (e.g., [9, 17, 18]).

Thelower half of Table 2 summarizes the 7 dynamic feature classes
(prefixed by d-). Categorical features such as filenames and domains
are one-hot encoded to Boolean features. To encode each feature, we
count all its possible values and exclude those appearing less than
five times in the training set. The d-network class (438 features) cap-
tures the HTTP, TCP, and UDP traffic. Of those, 430 features capture
unique domains contacted by the malware and HT TP User-Agent
strings used; three count the number of HT TP requests, TCP connec-
tions, and UDP pseudo-sessions; and 5 randomness-related features
capture the mean/median/min/max/std likelihood of domain names
and URLs contacted according to a recently proposed Markov Chain
model [9]. The d-file class features (60,555) capture the name and
extension of 60,547 files created or accessed by the malware, the
number of files read, written, and deleted; and 5 capture the ran-
domness of the filenames. The d-mutex class features (7) capture the
number of mutex objects created and the randomness of the mutex
names. The d-registry class features (60) capture 55 unique registry
keys written, and the count of registry keys created, opened, read,
written, and deleted. The d-service class features (736) capture the
count, randomness, and names of services and service managers
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created, started, and halted. The d-process class features (28,198) cap-
ture the count of processes created, processes terminated, and shell
commands invoked, as well as 28,195 unique process names. The
d-thread class features (7) capture the number of the threads opened,
created, resumed, terminated, and suspended, as well as the number
of the interactions with the context of a given thread and the number
of asynchronous procedure calls (APC) queued to a thread. The last
two features help capture suspicious behaviours.

Missing features. When a dynamic feature cannot be computed
(e.g., due to lack of activity), we assign it a default place-holder value
that does not belong to the domain of the feature. We refer to such fea-
tures as missing features. For example, if a sample has no file system
activity, we cannot compute the d-file filename randomness features.
As aresult, the 5 statistical features related to the randomness of the
file names are thus not available. To facilitate the following analysis
over the impact of the missing features, we define the feature missing
rate (FMR) of a malware family as the fraction of family samples that
have missing values in the file, registry, service, and process features
(which, among the seven dynamic features classes we consider, are
the most relevant for classification according to Table 4). Missing
values over all these four feature classes considerably degrades both
the amount and quality of useful information available to the clas-
sifier. According to our analysis, over 54% of the malware families
studied in our work contain on average 77% of the malware samples
per family with missing feature values in these four dynamic feature
classes. Missing observations can negatively impact ML classifiers
by overfitting the data and reducing the model’s accuracy. Recently,
Aonzo et al. [9] showed that classifier models tend to focus on static
features, rather than dynamic ones, precisely because static features
are rarely missing. In Section 4.6 we analyze the impact of missing
features in the classification results.

3.4 Models

We train multiple models to capture different axis: classification task
(i.e., binary or family classification), features (i.e., static, dynamic
and combined), dataset construction (i.e., distribution of families
in training dataset), and number of families and samples. All the
models are Random Forest classifiers whose hyper-parameters are
each time tuned by using a validation set. Random forests are intrinsi-
cally capable of handling categorical features (e.g., unique filenames
accessed during execution) and continuous features (e.g., filename
mean randomness).

Classification task. We build models for binary and family classifi-
cation tasks. The binary classification models detect whether a given
sample is malicious (positive class) or benign (negative class). The
family classification models identify the family of a given malicious
sample, that is, there is one class per malware family and no good-
ware class. We prefix the name of a model with binary- or family-
to indicate the classification task.

Features. We build models that use all static features, all dynamic fea-
tures, and all combined features (i.e., all static and all dynamic). The
name of amodelincludes -static-, -dynamic-, or -combined-to indicate
the features used. Dynamic and combined models only include sam-
plesthat called atleast 50 APIs during their execution, a threshold pre-
viously proposed to determine whether a sample has detonated [26].

Dataset construction. For the binary classification task, we ex-
periment with two ways of building our dataset, namely uniform
and not nonUniform. The uniform approach builds datasets that
balance the number of goodware and malware, using a sampling-
with-replacement approach, as follows. We uniformly select from
each family in Mp a number of samples so that the total number of
malicious samples matches the size of the benign dataset (i.e., each
family in Mp provides 24-25 samples for a total of 16,611 malware
samples). We repeat the process five times avoiding repetitions (i.e.,
each time selecting a different set of malware samples from each
family in Mp), as to completely cover all the malicious samples in
each family. These steps produce 5 balanced datasets. Each dataset is
split into 60% of samples for training, 20% for validation, and 20% for
testing. To evaluate a model, for each of the five datasets, we perform
a 10-fold cross validation to ensure that all the samples equally con-
tribute to the training and testing datasets. We report average results
across the five rounds and their respective folds. Thus, obtaining the
accuracy results from one model requires us to train and test 50 times.

The nonUniform approach replicates the unbalanced distribution
of samples per family in the Motif dataset [22]. The motivation for
this dataset is to study whether the family distribution in the training
set of a binary classification task (where family labels are not used)
affects the detection accuracy. In Motif, 29% of families have only one
sample, 41% have 2-5 samples, 12% 6-10, 10% 11-20,4% 21-30, 2% 31-40,
1% 41-50, and 1% has over 142 samples. We replicate this distribution
on the 670 families in Mp. For example, we select one sample from
29% (randomly-chosen without replacement) of the 670 Mp families
and 142 samples from one randomly-chosen family. The resulting
dataset comprises all 16,611 benign samples and 4,821 samples from
670 families that follow the per-family sample distribution in Motif.
Number of families and samples. To measure the impact that
the number of families to classify and the available samples for each
family have on the results, we build multiple ML-based classifiers for
the family classification task by uniformly sampling 70, 170, 270, 370,
470 and 570 families from the total 670 families. For each of them, we
also experiment with a version trained and tested on 50, 60, 70 and
80 malware samples for each family. As indicated above, we have
20% samples used as the validation data. Therefore, at maximum,
there are 80 malware samples for training and testing use.

4 EXPERIMENTAL STUDY

This section presents the results of the experiments we conducted
to answer the research questions presented in the introduction. We
have adopted the following structure for ease of reading: the reader
will find the discussion to (Rx) in Section 4.x and a summary with
the answer (Ax) at the end of each subsection.

4.1 Overall Classification Results

In this section, we examine how static, dynamic, and combined fea-
tures impact binary and family classification. Table 3 summarizes
the accuracy results for the three feature sets. It also reports the frac-
tion of malware families with 100% family-wise accuracy. In binary
classification, 100% family-wise accuracy for a family denotes that
the family can be perfectly differentiated from goodware. In family
classification, 100% family-wise accuracy instead means that sam-
ples from a malware family are not misclassified as another malware
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Table 3: Overall results

. Families
Task Features  Precision Recall F1-score 100% classified
Binary  Static 0.956 0.957 0.957 242 (36.12%)
Binary  Dynamic 0.945 0.892 0.926 465 (69.40%)
Binary  Combined 0.963 0.934 0.948 450 (67.16%)
Family  Static 0.856 0.850 0.848 68 (10.15%)
Family = Dynamic 0.734 0.708 0.704 114 (17.17%)
Family = Combined 0.874 0.867 0.865 138 (20.60%)

family. The results correspond to the uniform dataset construction
approach. Each line of the table report the averaged precision, recall
and F1 score of 10-fold cross validation. Besides, we also give the
fraction of malware families that are 100% classified using different
features and in different tasks.

The static features achieve higher F1 score than the dynamic fea-
tures in both binary and family classification. However, the fraction
of perfectly classified malware families is higher for dynamic fea-
tures, suggesting that dynamic features work very well for some
malware families, but poorly on others. The combination of static
and dynamic features brings marginal improvements in F1 score over
static-only features. It improves it by 1% for family classification, but
decreases it by 2% for binary classification. On the other hand, adding
dynamic features increases the percentage of perfectly classified fam-
ilies over the static case, although for binary classification the fraction
reduces compared to dynamic-only features. The accuracy reduction
with more features might seem counter-intuitive, but it can happen
when the two feature sets are not independent and bring different
strengths and weaknesses that lead to mistakes on different parts of
the input space. It is well known as the curse-of-dimensionality in
machine learning [53]. Adding more features does not necessarily
improve the overall accuracy, more features may bring unexpected
variance and noise into the classification module [28].

Our results may raise concerns on the value of dynamic analysis.
On the one hand, dynamic features outperform static features for
a fraction of families, significantly raising the number of perfectly
classified families (e.g., nearly doubling it for binary classification).
This confirms the value of dynamic analysis, for example when re-
searchers are interested to build behavioural signatures for specific
malware families. On the other hand, the overall impact of adding
dynamic features to static features is unclear. This might be the con-
sequence of malware families for which dynamic features do not
work well, because of intrinsic properties of the malware family (or
malware class), but also because the sandbox might fail to stimulate
samples adequately (e.g., due to evasion techniques or to the lack of
a live command-and-control server).

(A1) For both binary and family classification tasks, models
trained on static features alone provide higher accuracy than the
models trained only on dynamic features. The latter are able to
perfectly classify more families, but perform poorly on others,
producing an overall lower classification accuracy.

Adding dynamic features on top of the static features brings
marginal improvement for family classification and even
negatively affects binary classification.

4.2 Impact of Missing Dynamic Feature Values

A possible explanation for the worse results of dynamic features
compared to static features is that a sandbox may fail to stimulate
samples adequately to cause them to ‘detonate’, or simply sample
may not work properly due to missing local or remote components.
As aresult, the classifier might need to take a decision only based
on a limited snapshot of the malware runt-time behavior.

We computed the Pearson correlation coefficient between the
family-wise recall score of binary classification and the FMR to study
the link between the two. Interestingly, the correlation is not statis-
tically significant for the binary classification task (pearson -0.1 and
p-value 0.11). However, there is a clear negative correlation (-0.43,
p-value of 7.61%10716) for the family classification task. In this case,
as the fraction of samples with missing feature values for a family
increases, its classification accuracy decreases. This is also confirmed
by looking at the malware families that are the most difficult to clas-
sify with dynamic features, i.e., those for which the classifier has
the lower accuracy (see Table.11 and Table.12 in Section.4.6). Among
the top-10 all have an FMR > 65%.

This outcome demonstrates that the ML classifier might still be
able to identify signs of malicious behavior in incomplete dynamic
analysis reports, but more feature values are needed to precisely
distinguish among different families (in particular for those, like
downloaders, that might have similar behavioral profiles). In ad-
dition, binary classification is also affected by the quality of the
behavior collected from benign samples, while family classification
accuracy is solely associated with the feature completeness of mal-
ware samples in each family.

(A2) Globally, a statistically significant inverse correlation in the
family classification task between the family-wise classification
accuracy using dynamic features and the amount of missing
dynamic feature values exists. The correlation is instead not
significant for the binary classification task.

4.3 Impact of Packers and Protectors

This section evaluates whether the presence of off-the-shelf packers
and protectors harms the classification accuracy when considering
static features. In this experiment, we try to understand whether the
models overfit the packing/protection technology structure or are
able to capture data that allows them to classify samples correctly.

To answer this question, we first compute the family-wise classifi-
cation accuracy for both binary and family classification using static
features. We then compute the Pearson correlation scores between
the family-wise accuracy scores and the rate of packed samples in
each family. If packing negatively affects the ability to classify a
sample, we would expect lower accuracy for families where packing
is more prevalent.

However, the correlation scores are 0.015 (p-value 0.5) and 0.0001
(p-value 0.98) respectively for binary and family classification. Thus,
we can reject the hypothesis that classification accuracy is correlated
with the packing rate.

This might seem surprising, as one might expect a high correla-
tion between packing and misclassification rate at least for models
that rely only on static features. After all, packing was one of the
main reasons that led researchers to introduce malware analysis
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sandboxes and dynamic analysis. However, this is a common mis-
conception. In fact, while packing is very effective at impeding static
analysis (i.e., the ability to examine a sample and statically derive its
behavior), other works [7] have shown that common packers leave
certain areas of the binary untouched, thus having a limited effect
on the ability of a ML classifier to identify a sample.

(A3) Packed or protected samples (with off-the-shelf tools) do
not significantly correlate with their classification accuracy using
static features. This means that although these technologies
function well to deter static analysis (in particular reverse
engineering), do not significantly affect ML classifiers.

4.4 Impact of Ground Truth Confidence

To assign a family to a sample AVClass2 computes a list of (tag, con-
fidence) pairs, e.g., (FAM:sality, 5), (CLASS:virus, 4), (FAM:zpevdo,
1). Then, it selects as family the highest confidence tag that is either
a family in its taxonomy or an unknown tag not in its taxonomy.
The confidence score roughly represents the number of AV engines
that assign a tag to the sample, after accounting for aliases and dis-
counting groups of AV engines that copy their labels. This section
examines whether the AVClass2 confidence score for the selected
family impacts the classification accuracy.

To examine this issue, we first compute the confidence score for
each family. For each sample, we obtain a normalized confidence in
the [0,1] range by dividing the confidence score of the assigned fam-
ily over the sum of the confidence scores for all family and unknows
tags for the sample. In the case above, this step returns 0.83 as the
FAM:sality confidence was 5, but FAM:zpevdo also appeared in the
output. Then, we average the normalized confidence factor across
all samples in the family to produce a family confidence score.

Next, we compute the correlation between the family-wise clas-
sification accuracy and the family confidence score. The hypothesis
is that higher family confidence scores correlate with higher family
classification accuracy, i.e., the more agreement AV engines have
when tagging the sample, the easier it should be to classify the sam-
ple. The pearson correlation coefficient is 0.083 for static features
(p-value 0.03) and 0.062 for dynamic features (p-value 0.01). The
correlation is positive, but extremely small. Thus, we can conclude
that poor family classification is not influenced by a low AVClass2
confidence score, and the result is statistically significant. This is
further confirmed by examining the 10 families with lowest classi-
fication accuracy using either static-only or dynamic-only features
(Table 9 and Table.11 in the Appendix). Of those 20 families, all have
a confidence score above 0.5 and 15 have a confidence score above
0.8. This suggests that even when the AV engines do not fully agree
on the name of a sample, the majority vote likely selects the correct
family, which provides further confidence on our AVClass2-based
ground truth generation approach.

(A4) The accuracy of family classification is not correlated with
the AVClass2 confidence score, which captures the agreement
between different AV vendors on the family name of a sample.
This observation supports that AVclass2 is a valid tool for getting
ground truth when it is necessary to obtain the family name of
malware.

Table 4: Feature class importance using MDI score.

Binary classification Family classification

Feature Class Comb. Static Dyn“Comb‘ Static Dyn.

s-bytegrams 40.88 51.38 -1 38.60 41.67 -
d-registry 17.19 - 25.00 0.51 - 0.60
s-opcodegrams 13.44 21.08 -1 23.48 20.87 -
s-strings 9.09 15.27 - 17.62  19.27 -
d-file 7.74 - 29.70 3.16 - 56.20
s-sections 305 673 - 5.62 648 -
s-imports 248 417 - 7.87  9.30 -
d-thread 2.06 - 734 0.16 - 5.26
d-network 1.51 - 350 0.35 - 370
d-process 1.47 - 3290 0.87 - 30.70
s-headers 034 0.72 - 0.73  0.96 -
d-mutex 0.25 - 016 0.03 - 119
d-service 0.19 - 140 0.07 - 239
s-dll 0.17  0.28 - 0.52  0.57 -
s-file 0.13 035 - 039  0.87 -

4.5 Feature Class Importance

This section examines the importance of the static and dynamic
feature classes for binary and family classification. We measure the
importance of each feature class using the average Mean Decrease
Impurity (MDI) score. In a tree-based classifier, the MDI score of a
feature captures how often the feature was used in the tree. The more
a feature is used, the more important it is to distinguish different
classes. We average the MDI Score across all the features belonging to
the same feature class and over all trees in the Random Forest model.

Table 4 summarizes the feature class importance. Overall, static
features are ranked higher than dynamic features, especially for fam-
ily classification. This matches results in Section 4.1 where dynamic
features provide marginal improvements over static features. This
observation is in line with recent findings that although humans
prefer dynamic features, ML algorithms rely more on the always
present static features [9].

The most contributing static feature classes for both classification
tasks are s-bytegrams, s-opcodegrams, and s-strings. This confirms
what was previously observed in the literature, with raw and opcode
ngrams dominating over other static features [7]. On the other hand,
the most contributing dynamic feature classes for both classification
tasks are d-file and d-process. It is interesting to note that even expert
human analysts used widely file and processes operations to identify
malicious behaviours [9].

In our dataset, over 50% of the malware samples contain missing
features values in the d-network and d-service feature classes, thus
missing feature values is likely the reason for their low importance.
It is interesting that d-registry ranks second for binary classification,
but only 10th for family classification. This means that registry oper-
ations are useful to differentiate malware from goodware, but they
do not provide enough diversity to separate different malware fam-
ilies. This likely happens because multiple malware families operate
on the same registry keys such as those related to achieving persis-
tence (e.g., auto-start) and those that disable OS security features. In
contrast, goodware does not need to operate on those keys.
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Table 5: Classification accuracy for malware classes.

Binary class. Recall | Family class. F1 score

Class Static Dyn. Comb. | Static Dyn. Com.
Adware 0.905 0.915 0.981 0.926 0.761  0.925
Backdoor 0.966 0.943 0996 | 0.830 0.730  0.838
Clicker 0971 0.929 1.000 | 0.817 0.692 0.821
Dialer 0.994 0.875 1.000 | 0.988 0.888  0.984

Downloader | 0.974 0.899 0.996 | 0.864 0.695 0.874
Grayware 0932 0.895 0986 | 0.832 0.675 0.852
Miner 0.989 0.972 0999 | 0.927 0.807 0.962
Ransomware | 0.967 0.945 0.997 | 0.839 0.580 0.853
Rogueware 0.984 1.000 0992 | 0.616 0.401  0.663

Spyware 0972 0829 0998 | 0.869 0.704 0.879
Tool 0992 0929 1.000 | 0.864 0.778  0.830
Virus 0.885 0939 0971 | 0.819 0719  0.809
Worm 0978 0899 099 | 0922 0721 0921
Average | 0.967 0.920 0.9907 | 0.848 0.704 0.865

(A5) Static features are more important than dynamic features
for both classification tasks, but specially for family classification.
Raw and opcode n-grams are the most important feature classes
in both classification tasks. The importance of a feature class
may depend on the classification task. For example, d-registry
is important to distiguish malware from goodware, but is not
relevant for family classification.

4.6 Hard-to-Detect Malware

In this section, we illustrate which malware classes and families
pose a greater challenge for classifiers based on static and dynamic
features. Table 5 shows Recall and F1-scores for each malware class
in binary and family classification respectively. In binary classifica-
tion, the recall value is defined as the number of correctly classified
samples in the class over the total number of samples in the class.
The numbers differ from those in Table 3 because Table 5 only con-
siders the classification results of malware samples, while Table 3
covers the classification of both goodware and malware samples
(thus taking also false positives into account).

As we can see, the recall and F1 score are not uniform across all
classes and can widely vary depending on the task and the features
used. Static features are considerably better at detecting download-
ers, dialers, and worms. In contrast, dynamic features perform better
on rogueware, miner and ransomware.

These results are confirmed also if we look at individual families.
We provide in the appendix Table 9, Table 10, Table.11 and Table.12
to show the 10 families with the lowest accuracy in both classifica-
tion tasks using static and dynamic features. For instance, among
the 10 malware families for which the static classifier makes more
mistakes, we count four viruses (i.e., file infectors) and six grayware.
This is even more remarkable if we consider the fact that there are
only 40 families of Viruses in our entire dataset. The fact that viruses
typically append their code to benign files results in a wide variation
in terms of static features among samples of the same family, and
this can explain why it is hard for a static classifier to differentiate
them from goodware and from other families. Similarly, grayware
is defined as undesirable code, which is not outright malicious per
se, therefore making it difficult to find a clear boundary to isolate
these families. In the worst 10 families using dynamic features, we
can observe a similar pattern: grayware and virus dominate the list.
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Figure 1: F1 score heatmap for binary classification using
static model.

Besides, adware and spyware are also among the worst families.
Malware samples in each of the class have similar behaviours.

(A6) Models employing static features find more difficult to clas-
sify grayware and viruses. Dynamic features can identify ran-
somware, spyware and adware as malware, but they have great dif-
ficulty in properly identifying their families, probably due to very
similar runtime behaviours of different families in these classes.

4.7 Impact of Training Dataset Construction

This section evaluates the effect of the construction of the training
dataset on classification accuracy. We specifically investigate the im-
pact of the size of the training dataset, the variety of malware families
represented, and the uniformity of the sample-family selection. To
the best of our knowledge, the question of how the diversity in terms
of families impact binary classification has not been studied before.
To study this aspect we plot a number of heatmaps. In each exper-
iment, as described in Section.3, we reserved randomly 20 samples
in each family for validation (e.g., hyper-parameter tuning) and we
choose p samples from the remaining 80 samples and use them for
training and testing. To study the impact of number of available sam-
ples, we vary p from 50 to 80. To study instead the impact of the num-
ber of different families in the dataset, we progressively vary the num-
ber of families involved in both binary and family classification from
70 to 670. For each combination of number of families and number of
samples per family, we conduct a 10-fold cross validation test and re-
port the averaged F1 score in the corresponding cell of each heatmap.
Figure 1 and Figure 2 present heatmaps of the F1 score for binary
classification, using static features and dynamic features respectively.
Figure 3 shows the heatmap for the combined model, for brevity only
showing the variation with the number of families. Figure 4, Figure 5,
and Figure 6 are similar but for the family classification task.
Overall, the results indicate that as the number of samples per
family increases, the classification accuracy also increases. The ex-
ception is for the binary classification using static features, where
increasing the samples per family may cause a decrease in overall
accuracy. For example, when using 50 samples for each of the 670
families the F1 score is 0.960, but when using 80 samples it slightly
decreases to 0.958. However, the trend is different if we consider
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Figure 3: F1-score heatmap for binary classification with
combined model.

Samples

Figure 4: F1 score heatmap for family classification using
Random Forest on static analysis features.

more families. We consider this very small changes as fluctuations
due to the randomness of the sample selection process.

With respect to family diversity, the results confirm that the more
families in the training dataset the more difficult their classifica-
tion is. As expected, the decrease in classification accuracy is more
marked for the family classification task, where intuitively the higher
the number of classes the more difficult the classification becomes.
The decrease is also more marked for the dynamic features than for
the static ones, likely due to their lower discriminatory power as
discussed in Section 4.1.

Non-uniform sampling. We also evaluate the impact of a non-
uniform downsampling strategy for binary classification. For this
purpose, we mimic the distribution of the recently-proposed MOTIF
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Figure 5: F1 score heatmap for family classification using
Random Forest on dynamic analysis features
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Figure 6: F1-score heatmap for family classification when
combining features derived from static and dynamic analysis

dataset [22], which contain 3,095 PE malware samples from 454 fam-
ilies with an unbalanced distribution (e.g., the median is 3 samples
per family and 29% of families have a single sample). We create a
new dataset by applying the MOTIF distribution to Mp. This new
MOTIF-like dataset comprises of 4,821 samples from all 670 families
with the following distribution: 29% of families are singletons, 41%
have 2-5 samples, 12% 6-10, 10% 11-20, 4% 21-30, 2% 31-40, 1% 41-50,
and 1% has over 50 samples (up to 100).

We use this to compare two sampling approaches: the uniform
approach (which is the one we adopted so far in the paper) where
we keep a balanced number of samples for each family, versus a
nonUniform approach, where we consider a real-world case in which
the number of available samples varies from one family to another,
as captured by the MOTIF-like dataset. Table 6 show the results for
both approaches and different feature sets. We could not identify any
significant difference between the two approaches, thus suggesting
that training a classifier with a non-uniform amount of samples does
not significantly impact its performance, under the important as-
sumption that the testing dataset also follows the same distribution.

(A7) Increasing the number of malware families in the training
set makes the classification more complex and generally results
in a lower accuracy. While not surprising, this is very important
because previous studies were often performed on only few
dozens of families, with the risk of reporting inflated results that
do not generalize to larger and more realistic datasets.
Increasing the number of samples per family can help to increase
the classification accuracy, in particular for models based on
dynamic analysis. Finally, the choice between a non-uniform and
a uniform downsampling strategy does not significantly affect
the binary classification accuracy.
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Table 6: Impact of uniform and non-uniform sample selection in training dataset.

Model Precision Recall Fl-score Accuracy
binary-static-uniform 0.956 0.957 0.957 0.957
binary-dynamic-uniform 0.962 0.892 0.926 0.929
binary-combined-uniform 0.963 0.934 0.948 0.948
binary-static-nonUniform 0.961 0.960 0.961 0.960
binary-dynamic-nonUniform 0.959 0.886 0.921 0.924
binary-combined-nonUniform 0.955 0.927 0.940 0.927
Table 7: Binary classification accuracy on singletons and Binary Classification. Table 7 summarizes the binary classifica-

unseen families datasets.

Model Singletons Unseen
binary-static-uniform 0.943 0.815
binary-dynamic-uniform 0.805 0.898
binary-combined-uniform 0.985 0.908
binary-static-nonuniform 0.810 0.653
binary-dynamic-nonuniform 0.328 0.855
binary-combined-nonuniform 0.758 0.637
4.8 Model Generalization
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Figure 7: Binary classification accuracy on singletons and
unseen families of the uniform dynamic and static models.
(SS: Static Singleton. SU: Static Unseen. D is for Dynamic)

In this section, we test how well our models for binary and family
classification generalize on unseen data. To this extent, we validate
the performance of the previously-trained models on the singleton
and unseen datasets introduced in Section 2.2, which include new
families and have different distributions from the training data. This
scenario is known as the "out-of-distribution" (OOD) test [29], where
training and testing data have different distributions in the feature
space. The distribution gap between the training and testing data
has been frequently witnessed in malware analysis [21], as malware
families evolve rapidly over time. Theoretically, one should expect
the performance of a ML model to drop drastically in this more re-
alistic scenario, as OOD samples directly violate the IID assumption
of ML techniques.

10

tion results over the singletons and unseen families using the static,
dynamic, and joint feature pool. "Uniform" and "non-uniform" in
the table denote training with the 670 families with uniformly and
non-uniform dataset construction methods (§ 3.4) The empirical
measurements shown in Table 7 can be summarized around three
main observations.

First, the accuracy of binary classification using only static or dy-
namic features deteriorates significantly over singleton and unseen
family files. Using the combined feature set, the binary classifica-
tion accuracy with the uniform setting augments over the singleton
samples, whereas it deteriorates over the unseen families. In the
non-uniform setting, we can observe the same tendency of accuracy
drop over the OOD samples. The observations echo closely to the
out-of-distribution challenge of machine learning raised in [29].

Second, the accuracy deterioration over the out-of-distribution
samples is more significant in the non-uniform setting of training
than that in the uniform setting, regardless of the used features.

This is different from the results of the in-distribution evaluation
in Table 6, where we observe no major difference in accuracy be-
tween the uniform and non-uniform settings. These results show
an important point: classifiers built on very unbalanced datasets
may perform equally well when tested on samples with the same
unbalanced distribution, but generalize more poorly to other testing
datasets, likely because many families were underrepresented in the
training and thus the model failed to properly capture them.

Third, we can notice that static features generalize poorly to un-
seen families, while dynamic features perform better in this scenario.
Thisis due to the nature of the features themselves: static information
can precisely pinpoint only known samples, while dynamic behavior
can better generalize also to unknown ones. Thus, compared to static
features, dynamic features may provide more rich information to
capture new types of malicious behaviors that never appear in the
training phase.

We investigate this aspect in more detail by varying the number
of families we used for training. In Figure 7, we can see that dynamic
features perform poorly when the number of malware families for
training is low (as there was not enough example of behaviors to
learn from) but, with a sufficient number of families, they offer better
classification results than static features. Dynamic features usually
have a high dimensional and highly sparse feature representation.
For example, some files or processes only appear a few times in
the training set for specific malware families. A smaller number of
families may aggravate the curse of dimensionality, which results
in an overfitting of the classifier. Furthermore, we can observe the
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Figure 8: Entropy distribution comparison

classification accuracy over unseen samples improves as the number
of families increase, regardless of the features used in the test.
Family Classification. So far, we only tested the generalization
of our models in a binary classification scenario. We now apply our
family classifier trained using the 670 families over the singleton and
unseen families as another out-of-distribution test scenario. Achiev-
ing high or low classification accuracy over these out-of-distribution
samples is not interesting, as most of these samples share no com-
mon families as the training data and we don’t have the ground truth
family labels for these samples. Thus, the purpose of organizing this
test is only to study how the uncertainty level of the family classifier
changes over the out-of-distribution malware samples.

To measure the uncertainty difference, we define the Relative

e prlogpi
T

Entropy Score (RES) of the classifier’s output as , where

T= Zgzl 1/Clog1/C and C is the number of the families covered
by the training data building the classifier. In this experiment, C
is therefore set to 670. For an input sample, the output of the fam-
ily classifier is a 670-dimensional probability-valued vector {p; }
(k=1,2,3,...,C=670). Each pj gives the probabilistic confidence that
the sample belongs to the corresponding family. By definition, the
numerator 25:1 prlog pr. provides the entropy of the classifier’s

output. The denominator Zle 1/Clog1/C denotes the maximum
entropy that the classifier’s classification output may have. As a
result, the magnitude of RES is strictly normalized between 0 and
1. Higher/Lower RES denotes that the classifier shows higher/lower
uncertainty level over the classification output.

In Figure 8, we demonstrate the empirical cumulative distribution
function (CDF) of RES-based uncertainty distribution of the family
classifier’s output on the testing malware samples of the 670 families
(in-distribution samples) and those belonging to singleton / unseen
families. Consistently with theoretical studies [29], we can find that
the uncertainty level of the family classification output over the sin-
gleton and malware samples of previously unseen families increases
significantly, compared to those derived with the testing samples
sharing the same families of the training data.
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Table 8: Related work on ML-based Detection and family
Classification of Windows malware (S=Static, D=-Dynamic)

Goal Features Dataset
Work Year D C S D # Fam.
Rieck et al. [43] 2008 X v X v 10K 14
McBoost [38] 2008 | v X | v | v 5.5K -
PE-Miner [50] 2009 | v X | v X 16K -
Nataraj et al. [35] 2011 x| v | Vv v 67K 561*
OPEM [47] 2012 | v X | v v 1K -
Santos et al. [46] 2013 | v X | v X 1K
Dahl et al. [14] 2013 | v X | X v 1.8M
Kancherla et al. [23] 2013 v X v X 25K
Saxxe et al. [48] 2015 | v x| v X 350K
Miller et al. [33] 2016 | vV | X | V v 1.1M -
MtNet [18] 2016 | vV | V X v 2.8M 98
MAAR [45] 2017 | v X | X v 3K -
MalConv [41] 2018 v X v X 284K
EMBER [8] 2008 | vV | X | V X 400K
Rhode et al. [42] 2018 v X X v 5.1K -
MalDy [24] 2009 | V| V| X |V 20K 15
NeurLux [20] 2019 v X X v 34K -
MalInsight [17] 2009 | vV |V | V|V 3.5K 5
MalDAE [16] 2019 v X v v 5.5K -
MALDC [58] 2020 | V| X | X | V 54K
IMCEN [54] 2020 | v X | v X 9.4K
Zhang et al. [59] 2020 | v X | X v 27.7K
Rabadi et al. [40] 2020 | v X | X v 7.1K -
Joyce et al. [22] 2022 X | v | Vv X 3K 454
This work 2023 v v v v 67K 670

(A8) Our experiments confirm a significant performance drop in
binary classification over out-of-distribution samples, both in the
case of singleton and unseen families. At the same time, the confi-
dence of the ML-based classifier decreases significantly over these
out-of-distribution samples. This implies that ML-based models
tend to be less certain over malware samples drifted from the train-
ing samples. Our results also show that models trained on a very
unbalanced dataset generalize more poorly, and that dynamic fea-
tures generalize better than static over new families. Overall, as the
distribution gap between training and testing malware samples
is common in practice, these results raise concern over the utility
of ML-based malware classification for real-world scenarios.

5 RELATED WORK

Table 8 presents a categorization of previous works on Windows
malware classification, according to their goal (binary detection
or family classification), features (static or dynamic), and dataset
size (both in terms of malware executables and malware families).
Among the approaches in Table 8, the choice of the models varies
widely including classical models like Support Vector Machine, Gra-
dientBoost and Random Forest, as well as neural networks. Most
approaches perform feature extraction, e.g. extract n-grams of bytes,
opcodes, or system calls, but a couple work directly operate on raw
bytes and API sequences [20, 41].

MallInsight [17] is the only study so far to provide a comprehen-
sive coverage over the choice of features and classification tasks.
However, their dataset includes only 5 families. At the other end of
the spectrum, Nataraj et al. [35] studied only family classification
on a unbalanced dataset with over 500 classes. However, the authors
consider a each full AV label a different class, so that number does
not correspond to real malware families. In contrast, our study in-
vestigates the factors impacting the performance of ML classifiers
using a large-scale balanced dataset with 670 families.

ML challenges and pitfalls. In cyber security research, two major
challenges are raised in the practices of ML-based analysis. First of
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all, the issue of missing observations affecting the prediction accu-
racy, e.g., in network intruion detection [36, 52]. Secondly, most of
ML models follow a core assumption: the training and test data of a
ML model should be drawn identically and independently from the
same underlying distribution, i.e. the L1.D. assumption. However, the
L1.D assumption does not hold in practices. Highly diversified and
quickly evolving malware technologies make the implementations
and behaviours of malware vary significantly and frequently. New
variants of malware arise to exploits novel vulnerabilities and evade
detection of anti-virus services. Once a machine-learning-driven
malware classifier is deployed in practical security applications, the
fast changing profiles of malware samples breaks the 1.LD, assump-
tion and causes the deterioration of the classification accuracy [11].
The design of a robust classifier for frequently drifting malware
profiles is still an open problem.

Arp et al. [10] review the use ML-based classification in cyber
security published over the past 10 years. The study summarizes the
existing issues at the different stage of the ML-based pipelines for
cyber security data analysis . For example, the authors demonstrate
that the statistical bias introduced by training sample sampling and
inaccurate class label tagging may introduce spurious correlation
into the ML classifiers. In addition, employing inappropriate perfor-
mance metrics ignoring the class imbalance in the testing phase may
lead to incorrect interpretation to the quality of ML-based predica-
tive analysis. In general, according to [10], the performance metrics
of a ML-based analysis pipeline in cyber security practices should
be defined by considering the characteristics of the security data
collected and the requirements raised in the concerned applications.
Otherwise, the pipelines may produce unrealistic performance and
interpretations to security incidents. In our work we focus instead
on the bottlenecks of ML-based malware classification encountered
in practices, which may obstruct accurate classification of malware.
For instance, we focus on the impact of the coverage of malware
families for training and we dive into the potential reasons causing
failure of ML-based models over certain malware samples. We also
explore how the classifier behave over out-of-distribution malware
samples, which is an interesting problem in the practical deployment
of ML-driven pipelines.

Dataset construction. In 2015, the Microsoft Malware Classifi-
cation Challenge [51] was developed as a Kaggle competition to
conduct malware family classification. The corresponding dataset is
composed of disassembly and bytes of 20K Windows malware sam-
plesfrom 9 families. It was released in the Kaggle competition and has
since been used in several studies. [27, 37] built larger-scale Android
malware datasets for evaluating the performances of ML-driven clas-
sification models. More specifically, [37] evaluates the spatial and
temporal bias of binary classification accuracy over 129,728 Android
apps. [27] explores the variance-bias trade-off of malware clustering
on 134,698 Android apps. By comparison, our work focuses on the
measurement study over large-scale Windows malware collections.
Our goal is to characterize the applicability and limits of ML-driven
malware classifiers for practical use. In [22], Joyce et al. built a multi-
family dataset containing 3,095 malware samples collected from from
454 families. This work offers the most diversified coverage over
different malware families in public malware datasets with manually
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verified labels. Interestingly, this dataset has a highly skewed distri-
bution over the number of malware samples per family. Over half
of the families contain less than 5 samples per family, which poses
a few-shot learning challenge to ML-driven malware classification.
In our study tried to we mimic this distribution to assess the impact
of the skewed distribution of malware samples over the accuracy of
the trained ML-based classifiers. We also compare the impact of the
skewed distribution and that of varying malware coverage regarding
the classification accuracy. The empirical study helpsidentify the lim-
its of ML-based classification methods in practical malware analysis.

6 FINAL RECOMMENDATIONS

The goal of this work was to understand the key factors that influence
the performance of machine-learning models for malware detection
and classification. Based on the results of the individual experiments
that we conducted, we can draw some general recommendations on
the use of ML for malware classification:

1. Experiments on malware classification (both binary and family)
should be performed on hundreds of different families. Classifiers
trained on a few families (like the ones on the popular Microsoft
dataset) can provide misleadingly high accuracy scores.

2. Each family in the dataset should contain a sufficient number
of samples. In particular, results from experiment performed on
very unbalanced datasets (e.g., where many families only contain
a handful of samples) tend to generalize poorly when tested over
different distributions.

3. Static features dominate detection and classification of samples
from known families, by relying on signature-like information
extracted from sequences of bytes and opcodes. Packing, in its
current widespread implementation, does not seem to have a
considerable negative effect on this. The addition of dynamic fea-
tures, which are much more time-consuming and error-prone to
extract, has only a marginal impact on the classification accuracy
and therefore its use should be carefully considered if the goal is
to detect known families. However, static features are unable to
capture samples from unknown families, where instead models
based on dynamic behavior show a better ability to generalize.

4. The performance of all ML models drop drastically when tested
on OOD samples. Therefore, the completeness and the regular
update of the training data (which are both difficult to achieve
in the real world) are key to obtain good results. ML models, es-
pecially if integrating dynamic features, might still be used to
flag suspicious previously-unseen samples, but with much less
accuracy and higher false positive rates.
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APPENDIX

6.1 Impact of Missing Dynamic Feature Values

Figure 9 compares the family-wise classification accuracy (F1 score)
for a family with its FMR for the family classification task. The figure
shows that a lower FMR tends to produce higher F1 scores and vice
versa.

Feature Missing Rate per malware family

F1 score per malware family

Figure 9: F1 score for family classification using dynamic
features versus Feature Missing Rate (FMR) for the family.

6.2 Hard-to-Detect Malware Families

Tables 9 and 10 list the 10 malware families that have the lowest
binary and family classification accuracy when only static features
are used. Tables 11 and 12 show the 10 malware families with the
lowest binary and family classification accuracy using only dynamic
features.

Table 9: Top-10 malware families with the lowest binary
classification accuracy using the static features (i.e., highest
mispredictions as goodware).

Static binary classification

Family Class AvgRecall % packed
pioneer virus 0.401 6%
asparnet grayware 0.410 5%
systweak grayware 0.458 19%
shopper grayware 0.500 1%
sality virus 0.516 4%
vitro virus 0.553 3%
installcore  grayware 0.596 10%
slugin virus 0.598 4%
elex adware 0.603 9%
passview grayware 0.617 35%
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Table 10: Top-10 families with the lowest family classification
accuracy using static features (i.e., highest mispredictions
to other families)

Static family classification

Family Class AvgF1 % packed
zpevdo grayware 0.150 15%
vitro virus 0.240 3%
uwamson grayware 0.252 15%
gendal grayware 0.280 62%
dumpex grayware 0.290 40%
alman virus 0.293 11%
sality virus 0.328 4%
pasta grayware 0.346 28%
cobra grayware 0.381 60%
copidmbe  virus 0.387 9%

Table 11: Top-10 malware families with the lowest binary
classification accuracy using dynamic features (i.e., highest
mispredictions as goodware).

Dynamic binary classification

Family Class AvgRecall Packed FMR
tasker grayware 0.0 11% 0.77
malex downloader 0.0 1% 0.77
rostpay grayware 0.0 96% 0.76
constructor grayware 0.0 13% 0.78
atcpa virus 0.0 0% 0.78
mocrt spyware 0.0 73% 0.80
mokes backdoor 0.0 1% 0.65
bingoml grayware 0.0 22% 0.72
safebytes grayware 0.0 99% 0.81
trymedia adware 0.0 73% 0.70

Table 12: Top-10 families with the lowest family classification
accuracy using dynamic features (i.e., highest mispredictions
to other families)

Dynamic family classification

Family Class AvgF1 %packed FMR
bancos spyware 0.0 44%  0.76
kovter grayware 0.0 0% 078
safebytes grayware 0.0 99%  0.80
winner grayware 0.0 0% 0.80
umbra downloader 0.0 0% 0.80
ulise grayware 0.0 2% 080
contenedor  virus 0.0 0% 0.80
cobra grayware 0.0 60%  0.79
kuaizip adware 0.0 1% 0.80
zpevdo grayware 0.0 15% 0.77
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