import torch import torch.nn as nn bce, sigmoid, softmax = nn.BCELoss(), nn.Sigmoid(), nn.Softmax(dim=1) class ASM2VEC(nn.Module): def __init__(self, vocab_size, function_size, embedding_size): super(ASM2VEC, self).__init__() self.embeddings = nn.Embedding(vocab_size, embedding_size, _weight=torch.zeros(vocab_size, embedding_size)) self.embeddings_f = nn.Embedding(function_size, 2 * embedding_size, _weight=(torch.rand(function_size, 2 * embedding_size)-0.5)/embedding_size/2) self.embeddings_r = nn.Embedding(vocab_size, 2 * embedding_size, _weight=(torch.rand(vocab_size, 2 * embedding_size)-0.5)/embedding_size/2) def update(self, function_size_new, vocab_size_new): device = self.embeddings.weight.device vocab_size, function_size, embedding_size = self.embeddings.num_embeddings, self.embeddings_f.num_embeddings, self.embeddings.embedding_dim if vocab_size_new != vocab_size: weight = torch.cat([self.embeddings.weight, torch.zeros(vocab_size_new - vocab_size, embedding_size).to(device)]) self.embeddings = nn.Embedding(vocab_size_new, embedding_size, _weight=weight) weight_r = torch.cat([self.embeddings_r.weight, ((torch.rand(vocab_size_new - vocab_size, 2 * embedding_size)-0.5)/embedding_size/2).to(device)]) self.embeddings_r = nn.Embedding(vocab_size_new, 2 * embedding_size, _weight=weight_r) self.embeddings_f = nn.Embedding(function_size_new, 2 * embedding_size, _weight=((torch.rand(function_size_new, 2 * embedding_size)-0.5)/embedding_size/2).to(device)) def v(self, inp): e = self.embeddings(inp[:,1:]) v_f = self.embeddings_f(inp[:,0]) v_prev = torch.cat([e[:,0], (e[:,1] + e[:,2]) / 2], dim=1) v_next = torch.cat([e[:,3], (e[:,4] + e[:,5]) / 2], dim=1) v = ((v_f + v_prev + v_next) / 3).unsqueeze(2) return v def forward(self, inp, pos, neg): device, batch_size = inp.device, inp.shape[0] v = self.v(inp) # negative sampling loss pred = torch.bmm(self.embeddings_r(torch.cat([pos, neg], dim=1)), v).squeeze() label = torch.cat([torch.ones(batch_size, 3), torch.zeros(batch_size, neg.shape[1])], dim=1).to(device) return bce(sigmoid(pred), label) def predict(self, inp, pos): device, batch_size = inp.device, inp.shape[0] v = self.v(inp) probs = torch.bmm(self.embeddings_r(torch.arange(self.embeddings_r.num_embeddings).repeat(batch_size, 1).to(device)), v).squeeze(dim=2) return softmax(probs)