
Computers & Security 128 (2023) 103134

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Adversarial attacks against Windows PE malware detection: A survey

of the state-of-the-art

Xiang Ling

a , Lingfei Wu

b , Jiangyu Zhang

d , Zhenqing Qu

d , Wei Deng

d , Xiang Chen

d ,
Yaguan Qian

c , Chunming Wu

d , Shouling Ji d , Tianyue Luo

a , Jingzheng Wu

a , ∗, Yanjun Wu

a , ∗

a Institute of Software, Chinese Academy of Sciences, Beijing, 100190, Beijing, China
b Pinterest,New York, 10018, NY, USA
c Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
d Zhejiang University, Hangzhou, 310027, Zhejiang, China

a r t i c l e i n f o

Article history:

Received 9 October 2022

Revised 19 December 2022

Accepted 4 February 2023

Available online 7 February 2023

Keywords:

Portable executable

Malware detection

Machine learning

Adversarial machine learning

Deep learning

Adversarial attack

a b s t r a c t

Malware has been one of the most damaging threats to computers that span across multiple operating

systems and various file formats. To defend against ever-increasing and ever-evolving malware, tremen-

dous efforts have been made to propose a variety of malware detection that attempt to effectively and

efficiently detect malware so as to mitigate possible damages as early as possible. Recent studies have

shown that, on the one hand, existing machine learning (ML) and deep learning (DL) techniques en-

able superior solutions in detecting newly emerging and previously unseen malware. However, on the

other hand, ML and DL models are inherently vulnerable to adversarial attacks in the form of adversarial

examples, which are maliciously generated by slightly and carefully perturbing the legitimate inputs to

misbehave. Adversarial attacks are initially studied in the domain of computer vision like image classifi-

cation, and then quickly extended to other domains, including natural language processing, audio recog-

nition, and even malware detection. In this paper, we focus on malware with the file format of portable

executable (PE) in the family of Windows operating systems, namely Windows PE malware , as a rep-

resentative case to study the adversarial attack methods in such adversarial settings. To be specific, we

start by first outlining the general learning framework of Windows PE malware detection based on ML/DL

and subsequently highlighting three unique challenges of performing adversarial attacks in the context of

Windows PE malware. Then, we conduct a comprehensive and systematic review to categorize the state-

of-the-art adversarial attacks against PE malware detection, as well as corresponding defenses to increase

the robustness of Windows PE malware detection. Finally, we conclude the paper by first presenting other

related attacks against Windows PE malware detection beyond the adversarial attacks and then shedding

light on future research directions and opportunities.

© 2023 Elsevier Ltd. All rights reserved.

1

t

u

t

m

(

Q

q

(

y

n

a

(

a

a

f

a

h

0

. Introduction

With the rapid development and advancement of information

echnology, computer systems are playing an indispensable and

biquitous role in our daily lives. Meanwhile, the cyberattack

hat attempts to maliciously exploit the computer system with

alicious intentions (e.g. , damaging computers or gaining eco-
∗ Corresponding authors.

E-mail addresses: lingxiang@iscas.ac.cn (X. Ling), lwu@email.wm.edu

L. Wu), zhangjiangyu@zju.edu.cn (J. Zhang), quzhenqing@zju.edu.cn (Z.

u), dengwei@zju.edu.cn (W. Deng), wasdnsxchen@gmail.com (X. Chen),

ianyaguan@zust.edu.cn (Y. Qian), wuchunming@zju.edu.cn (C. Wu), sji@zju.edu.cn

S. Ji), tianyue@iscas.ac.cn (T. Luo), jingzheng08@iscas.ac.cn (J. Wu),

anjun@iscas.ac.cn (Y. Wu) .

m

e

e

p

m

s

f

d

ttps://doi.org/10.1016/j.cose.2023.103134

167-4048/© 2023 Elsevier Ltd. All rights reserved.
omic profits) has been an important type of ever-increasing

nd constantly evolving security threat in our society. Malware

 i.e. , short for Mal icious soft ware) is one of the most common

nd powerful cyberattacks for attackers to perform malicious

ctivities in computer systems, such as stealing confidential in-

ormation without permissions, compromising the whole system,

nd demanding for a large ransom. While malware spans across

ultiple operating systems (e.g. , Windows, Linux, macOS, Android,

tc.) with various file formats, such as portable executable (PE),

xecutable and linkable format (ELF), Mach-O, Android application

ackage (APK), and portable document format (PDF), we focus on

alware with the PE files in the family of Windows operating

ystems (namely Windows PE malware) in this paper due to the

ollowing two reasons. First, malware analysis techniques (e.g. ,

etection methods) for Windows PE files are mostly different

https://doi.org/10.1016/j.cose.2023.103134
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2023.103134&domain=pdf
mailto:lingxiang@iscas.ac.cn
mailto:lwu@email.wm.edu
mailto:zhangjiangyu@zju.edu.cn
mailto:quzhenqing@zju.edu.cn
mailto:dengwei@zju.edu.cn
mailto:wasdnsxchen@gmail.com
mailto:qianyaguan@zust.edu.cn
mailto:wuchunming@zju.edu.cn
mailto:sji@zju.edu.cn
mailto:tianyue@iscas.ac.cn
mailto:jingzheng08@iscas.ac.cn
mailto:yanjun@iscas.ac.cn
https://doi.org/10.1016/j.cose.2023.103134

X. Ling, L. Wu, J. Zhang et al. Computers & Security 128 (2023) 103134

f

u

m

t

d

o

i

N

i

t

l

i

s

s

o

o

s

o

s

r

r

e

2

I

t

a

g

t

l

b

l

w

c

(

n

o

Y

h

I

t

u

e

M

t

b

f

f

r

m

c

a

g

p

v

g

n

m

t

L

a

i

a

e

s

r

t

e

e

E

F

2

2

L

2

c

Y

i

m

m

fi

e

p

t

t

t

t

s

o

i

t

A

2

S

f

m

2

l

p

rom those for other files like APK and PDF files because their

nderlying operating systems, the file format, and execution

odes are significantly different from each other. Research shows

here is no universal malware detection that can satisfactorily

etect all kinds of malware, and thus existing literature papers

n malware analysis commonly point out what specific operat-

ng system they target and what file format they are (Raff and

icholas, 2020; Ucci et al., 2019). That is the very first and most

mportant reason why we focus on Windows PE malware in

his paper. Second, Windows is the most worldwide popular and

ong-standing operation system for end users while the malware

n the file format of PE constitutes the earliest and maximum

tudied threat in the wild (Schultz et al., 2001). According to the

tatistics of Kaspersky Lab at the end of 2020, there are an average

f 360,0 0 0 malware detected by Kaspersky per day and over 90%

f which are Windows PE malware (Kaspersky Lab, 2020b). Similar

tatistical trends have been reported by Kaspersky Lab at the end

f 2021 (Kaspersky Lab, 2020a), indicating Windows PE files are

till not sufficiently protected until now.

To mitigate and address the ever-increasing number of secu-

ity threats caused by Windows PE malware, there are tremendous

esearch efforts have been made to detect Windows PE malware

ffectively and efficiently (Ceschin et al., 2020; Idika and Mathur,

007; Raff and Nicholas, 2020; Ucci et al., 2019; Ye et al., 2017).

n particular, traditional malware detection can be traced back

o signature-based malware detection, which determines whether

 given suspicious software is malicious or not (i.e. , malware or

oodware) by comparing its signature with all signatures from

he maintained database of malware that has been previously col-

ected and confirmed. It is obvious that the fatal flaw of signature-

ased malware detection is that it can only detect previously col-

ected and known malware due to the heavy reliance on the mal-

are database. In the last few decades, inspired by the great suc-

esses of ML and DL in various long-standing real-world tasks

 e.g. , computer vision, natural language processing, speech recog-

ition, etc.), a variety of ML/DL-based malware detection meth-

ds (Ceschin et al., 2020; Raff and Nicholas, 2020; Ucci et al., 2019;

e et al., 2017) that leverage the high capacity of ML/DL models

ave been adapted and presented to detect Windows PE malware.

n general, these ML/DL-based malware detection methods claim

hat they can generalize well to predict the new and previously

nseen (i.e. , zero-day) malware instances due to the inherent gen-

ralizability of ML/DL models.

Unfortunately, recent studies have demonstrated that existing

L/DL models are inherently vulnerable to adversarial attacks in

he form of adversarial examples, which are maliciously generated

y slightly and carefully perturbing the legitimate inputs to con-

use the target ML/DL models (Carlini and Wagner, 2017; Good-

ellow et al., 2015). Since the creation of adversarial attacks, most

esearch papers focused on studying adversarial attacks in the do-

ain of computer vision (Akhtar and Mian, 2018), e.g. , slightly and

arefully perturbing a “Persian cat” image x such that the resulting

dversarial image x ′ can be misclassified as a “lionfish” by the tar-

et image classifier. Normally, in the context of images, most pro-

osed adversarial attacks resolve to the feature-space attack like

arious gradient-based methods, which can be directly applied to

enerate adversarial images. Until now, there have been a large

umber of adversarial attack methods and corresponding defense

echanisms being proposed by security researchers and practi-

ioners in both academia and industry (Chakraborty et al., 2018;

ong et al., 2022; Machado et al., 2021; Serban et al., 2020; Zhang

nd Li, 2019).

Inspired by those studies of adversarial attacks in the context of

mages, a natural question arises is that, is it feasible to perform

dversarial attacks against existing malware detection methods,

specially against ML/DL based PE malware detection? To an-
2
wer the aforementioned question, in recent five years, security

esearchers and practitioners have proposed lots of adversarial at-

acks in the context of malware (Al-Dujaili et al., 2018; Anderson

t al., 2017; Castro et al., 2019a; 2019b; Ceschin et al., 2019; Chen

t al., 2019; 2020a; 2017; Demetrio et al., 2019; 2020a; 2020b;

brahimi et al., 2021; Fadadu et al., 2019; Fang et al., 2020; 2019;

leshman et al., 2018; Hu and Tan, 2017a; 2017b; Kawai et al.,

019; Khormali et al., 2019; Kolosnjaji et al., 2018; Kreuk et al.,

018; Labaca-Castro et al., 2021a; Li and Li, 2021; Li et al., 2020a;

iu et al., 2019; Lucas et al., 2021; Park et al., 2019; Qiao et al.,

022; Rosenberg et al., 2020a; 2020b; 2018; Song et al., 2020; Su-

iu et al., 2019; Wang and Miikkulainen, 2020; Wu et al., 2018;

uan et al., 2020; Zhang et al., 2020a; Zhong et al., 2020), requir-

ng that the generated adversarial malware file should not only be

isclassified as the “goodware” by the target malware detection

odel, but also behaves exactly the same as the original malware

le. Compared to the adversarial attack in the context of images,

xploring the adversarial attack in the context of malware is com-

letely different and extremely challenging due to the highly struc-

ured nature of software files like PE files. To put it simply, even

hough we can employ existing feature-space attacks to generate

he “adversarial features of malware”, it is significantly challenging

o find the corresponding “adversarial malware file” that can pre-

erve the format, executability, and maliciousness the same as the

riginal malware file.

Related work to this survey. In fact, for the general adversar-

al attacks and defenses, there are lots of surveys being done on

he image, audio, video, text, and graph (Akhtar and Mian, 2018;

lshemali and Kalita, 2020; Chakraborty et al., 2018; Lan et al.,

022; Long et al., 2022; Machado et al., 2021; Serban et al., 2020;

un et al., 2018; Zeng et al., 2020; Zhang and Li, 2019), but very

ew surveys focusing on the adversarial attacks in the context of

alware (Li et al., 2021; Park and Yener, 2020; Pierazzi et al.,

020). Here, we introduce those closely related surveys and high-

ight their limitations and differences compared with our survey

aper as follows.

• In Pierazzi et al. (2020) , Pierazzi et al. are the first to present

a general mathematical formalization of adversarial attacks in

the problem-space and further propose a novel problem-space

attack against Android malware detection. Although they iden-

tify four key constraints and commonalities among different

domains (i.e. , image classification, face recognition, code attri-

bution, PDF malware, android malware, etc.) in terms of the

problem-space adversarial attack, this paper (Pierazzi et al.,

2020) is not a survey paper as it neither extensively collects

all existing research efforts nor systematically categorizes and

summarizes these effort s in this research direction.

• In Park and Yener (2020) , Park and Yener actually conduct an

incomplete and improper survey in reviewing existing adver-

sarial attacks against malware classifiers, since the authors mis-

takenly categorize them into two categories: gradient-driven

and problem-driven approaches, which are clearly not suffi-

cient to cover all existing adversarial attacks against malware

detection. For instance, the semantics-preserving reinforcement

learning (SRL) attack proposed by Zhang et al. (2020a) is nei-

ther a gradient-driven nor a problem-driven method. In addi-

tion, this paper (Park and Yener, 2020) lacks surveying existing

defense methods against such adversarial attacks.

• In Li et al. (2021) , Li et al. first make a series of formulations

and assumptions in the context of adversarial malware detec-

tion and then attempt to survey this research field of adver-

sarial malware detection in a broad spectrum of malware for-

mats, including Windows PE, Android Package Kit (APK), and

Portable Document Format (PDF), which is supposed to be too

coarse-grained to fully understand the unique challenges ad-

X. Ling, L. Wu, J. Zhang et al. Computers & Security 128 (2023) 103134

a

v

r

w

r

t

e

m

t

i

i

e

l

r

m

s

i

b

w

P

t

a

d

i

w

t

s

c

2

d

t

fi

u

w

P

Fig. 1. The general layout of a PE file consists of three groups of information:

header information, section information, and the other un-mapped data.

2

2

P

M

s

C

o

g

h

b

fi

o

H

f

D

t

P

v

O

m

e

t

a

o

o

l

versarial attacks and defenses for different malware formats. It

is well-known that malware detection relies heavily on the spe-

cific file formats of malware, and thus existing literature papers

on malware analysis commonly point out what specific oper-

ating system they target and what file format they are (Raff

and Nicholas, 2020; Ucci et al., 2019). Therefore, our paper in-

stead focuses on the malware format of Windows PE, which

allows us to specifically identify the distinct characteristics of

Windows PE malware and further gain a deeper and thorough

understanding of adversarial attacks and defenses in terms of

Windows PE malware.

Contributions of this survey. Motivated by the ever-increasing

ttention of adversarial malware detection, the purpose of this sur-

ey is to provide a comprehensive review on the state-of-the-art

esearch efforts of adversarial attacks against Windows PE mal-

are detection as well as corresponding defenses to increase the

obustness of existing PE malware detection solutions. We expect

hat this survey can serve successive researchers and practition-

rs who are interested in attacking and defending Windows PE

alware detection. In addition, this survey also aims to provide

he basic principles to solve this challenging question in generat-

ng “real” adversarial PE malware rather than unpractical adversar-

al PE features that violate the principles (i.e. , format-preserving,

xecutability-preserving, and maliciousness-preserving). We be-

ieve that these principles can constitute a useful guideline when

elated researchers and practitioners deal with the generic task of

alware detection, not only restricted to PE malware detection. To

ummarize, the key contributions of this survey are as follows.

• To the best of our knowledge, this is the first work that sum-

marizes and highlights three unique challenges of adversarial

attacks in the context of Windows PE malware in the wild, i.e. ,

format-preserving, executability-preserving, and maliciousness-

preserving.

• We conduct a comprehensive and systematic review for adver-

sarial attacks against Windows PE malware detection and pro-

pose a complete taxonomy to categorize the state-of-the-art ad-

versarial attack methods from different viewpoints.

• We summarize the existing adversarial defenses for PE malware

detection against the proposed adversarial attacks. In addition,

we discuss other types of attacks against Windows PE malware

detection beyond adversarial attacks.

Organization. The rest of this paper is organized as follows. We

ntroduce the general layout of PE files and outline the ML/DL-

ased learning framework of PE malware detection in § 2 . In § 3 ,

e manifest three unique challenges of adversarial attacks against

E malware detection compared with the general adversarial at-

acks in the context of images. § 4 first presents our taxonomy of

dversarial attacks against PE malware detection and then gives a

etailed introduction to the state of the art. We summarize the ex-

sting adversarial defenses for PE malware detection in § 5 . In § 6 ,

e first discuss other types of attacks against PE malware detec-

ion beyond the adversarial attacks and then point out some re-

earch directions and possible opportunities for future work. We

onclude our survey paper in § 7 .

. Machine learning and deep learning for PE malware

etection

This section aims to provide the basics to understand how to

ake advantage of ML and DL for malware detection in terms of PE

les in the family of Windows operating systems (OSs). In partic-

lar, we first introduce the general layout of PE files and PE mal-

are in § 2.1 , and then outline the general learning framework of

E malware detection models based on ML/DL in § 2.2 .
3
.1. PE file layout and malware

.1.1. General layout of PE files

The Portable Executable (PE) format Microsoft, Inc. (2020) ;

ietrek (2020) is created to provide a common file format for the

icrosoft family of Windows OSs to execute code and store es-

ential data that is necessary to execute the code on all supported

PUs, which has made PE the dominant file format of executables

n the Windows platform since its creation. As shown in Fig. 1 , the

eneral file layout of a PE contains three groups of information, i.e. ,

eader information (avocado green), section information (sandy

rown) and the other un-mapped data (light blue).

The first group is header information which is organized in a

xed manner to tell the OS how to map the PE file into mem-

ry for execution. In particular, every PE file starts with the DOS

eader followed by the DOS Stub , both of which are only used

or compatibility with the Microsoft disk operating system (MS-

OS) (Paterson, 1983). Following the DOS Header and DOS Stub,

he PE Header outlines the overview information about the entire

E file, including the number of sections, the creation time, and

arious other attributes of PE, etc. Besides that, the subsequent PE

ptional Header is used to supplementally describe PE files with

ore than 30 attributes (e.g. , size of code, address of entry point,

tc.) in more detail. The last component in the header informa-

ion group usually is the Section Table , which provides information

bout all associated sections, including names, offsets, sizes, and

ther information. It is worth noting that one PE needs at least

ne section to be loaded and run.

The second group is section information which contains a

ist of consecutive sections with the executable code and neces-

X. Ling, L. Wu, J. Zhang et al. Computers & Security 128 (2023) 103134

s

t

t

c

c

t

v

u

b

s

t

b

t

T

T

m

t

P

a

n

a

d

o

2

i

t

i

e

d

e

p

P

p

t

p

P

fi

b

b

n

t

f

s

m

Y

2

2

t

b

h

t

w

t

b

s

t

w

v

t

n

m

t

w

i

m

o

d

t

l

t

i

f

t

2

p

b

l

g

i

(

g

c

c

r

d

2

w

t

ary data. In general, the number and the order of these sec-

ions are not fixed. Although the name of a section can be cus-

omized by the user, Microsoft officially defines several naming

onventions based on its semantics and functionalities. In most

ases, the “.text” section in PE contains the executable code, while

he “.data” section contains necessary data, mainly storing global

ariables and static variables. The “.idata” and “.edata” sections are

sed to store the address and size information for the import ta-

le and export table, respectively. To be specific, the import table

pecifies the APIs that will be imported by this executable, while

he export table specifies its own functions so that other executa-

les can access them. The “.reloc” section has relocation informa-

ion to ensure the executable is positioned and executed correctly.

he “.rsrc” section contains all resources (e.g. , icons, menus, etc.).

he last group is the other un-mapped data which will not be

apped into memory. In particular, the un-mapped data refers to

he chunk of unused bytes, like debug information, at the end of

E files.

Within the family of Windows OSs, PE mainly has two typical

nd most commonly used file types, i.e. , EXEcutable (EXE) and Dy-

amic Link Library (DLL), which are generally ended with “.exe”

nd “.dll” as the suffix name. Normally, an “.exe” file can be run in-

ependently while a “.dll” file contains the library of functions that

ther executables can use in the Windows platform (Pietrek, 2020).

.1.2. PE malware

Malicious software, i.e. , malware, is purposely designed and

mplemented to satisfy the malicious goals and intentions of at-

ackers, e.g. , accessing the system without user permissions, steal-

ng private or confidential information, asking for a large ransom,

tc. Since the PE file format was first created in the family of Win-

ows OSs, PE files have been widely leveraged by malicious attack-

rs to build PE malware. Until now, according to the security re-

orts from AV-TEST Institute (AV-TEST Institute, 2020) and Avira

rotection Labs (Avira, Inc., 2020), PE malware still remains the

redominant threat for both personal users and business users in

he wild for the following two major reasons. First, the worldwide

opularity of the family of Windows OSs and the commonality of

E files inside make the family of Windows OSs, especially the PE

le that can be executed, become the main target of attackers for

enefit maximization. Second, unlike other file types, PE files can

e self-contained, which means that PE malware can include all

eeded data and does not require additional data to launch the at-

ack. In addition, based on different types of proliferation and dif-

erent malicious intentions, PE malware can be further briefly clas-

ified as viruses, trojans, PUA, worms, adware, ransomware, etc. For

ore details, we refer interested readers to Souppaya et al. (2013) ;

e et al. (2017) ; Zeidanloo et al. (2010) .
Fig. 2. The Overview Learning Frame

4
.2. Learning framework for PE malware detection

.2.1. Overview

To defend against PE malware, i.e. , effectively and efficiently de-

ecting PE malware so that potential infections and damages can

e mitigated or stopped, there are tremendous research effort s

ave been made for PE malware detection. Traditional malware de-

ection can actually be traced back to classic signature-based mal-

are detection. To be specific, signature-based malware detection

ypically maintains a database of signatures of malware that have

een previously collected and confirmed. For a given suspicious

oftware like a PE file, signature-based malware detection can de-

ermine whether it is malicious or not by comparing its signature

ith all signatures from the maintained database of malware. Ob-

iously, signature-based malware detection has a fatal drawback in

hat it heavily relies on the maintained database of malware sig-

atures, so that it can only detect previously collected and known

alware.

In recent years, inspired by the great successes of ML and DL

echniques in various research fields, various ML/DL-based mal-

are detection methods that leverage the high learning capac-

ty of ML/DL models have been adapted and proposed for PE

alware detection. These ML/DL-based malware detection meth-

ds normally claim that, as ML/DL models generalize well to pre-

ictions of new and unseen instances, they can also generalize

o new and previously unseen (i.e. , zero-day) malware. Fig. 2 il-

ustrates the overview learning framework of PE malware detec-

ion (Ceschin et al., 2020), which generally consists of three steps,

ncluding data acquisition, feature engineering as well as learning

rom models and predictions. In the following, we are going to in-

roduce each step at a glance.

.2.2. Data acquisition

It is well known that the data quality determines the up-

er limit of ML/DL models (Cortes et al., 1995). In order to

uild any malware detection models, it is fundamental to col-

ect and label sufficient PE samples, including both malware and

oodware of PE files. However, unlike the benchmark datasets

n the field of computer vision or natural language processing

 e.g. , MNIST (LeCun et al., 1998), CIFAR (Krizhevsky, 2009), Ima-

eNet (Deng et al., 2009), Yelp Review (Inc., 2020), etc.), cyberse-

urity companies or individuals normally treat PE samples, espe-

ially raw files of PE malware, as private property, and thus rarely

elease them to public. Although a few security institutions or in-

ividuals have shared their datasets of PE files (Corvus Forensics,

021; Ytisf, 2021), there is no established benchmark that has been

idely used for most PE malware detection until now. In addition

o collecting PE samples, another important process is to distin-
work of PE Malware Detection.

X. Ling, L. Wu, J. Zhang et al. Computers & Security 128 (2023) 103134

g

r

a

t

t

s

s

w

o

C

d

m

N

v

i

fi

j

t

s

n

t

Y

(

2

s

a

m

e

u

a

f

w

g

a

Y

T

C

∗

uish PE malware from all collected PE files, i.e. , data labeling. Cur-

ently, a common practice to label PE files is to rely on malware

nalysis services like VirusTotal, which can provide multiple detec-

ion results (i.e. , whether it is malware) from nearly 70 state-of-

he-art anti-virus engines (Chen et al., 2015). Unfortunately, for the

ame suspicious PE sample, it is well-known that its detection re-

ults from different anti-virus engines are somewhat inconsistent

ith each other. To address these challenges, a variety of meth-

ds (Kantchelian et al., 2015; Sebastián et al., 2016; Sebastián and

aballero, 2020; Zhu et al., 2020) have been proposed to unify the

etection label by either picking up a “credible” anti-virus (i.e. , the

ost effective and recognized anti-virus software like Kaspersky or

orton) or adopting a voting-based approach from multiple anti-

irus engines.

Formally, suppose there is a problem space Z (also known as

nput space) that contains objects of one specific domain (e.g. , PE

les, images, texts, etc.) from the real-world applications, each ob-

ect z in the problem space Z (z ∈ Z) is associated with a ground-

ruth label y ∈ Y , in which Y denotes the corresponding label
able 1

ommon Features and Corresponding Learning Models for PE Malware Detection.

Features Category Representative ML/DL Model Arc

Static Dynamic

Byte Sequence � Naïve Bayes Murphy et al. (200

Vapnik (1995) , DT Witten and F

MLP Collobert and Bengio (200

CNN Krizhevsky et al. (2012) ,

LightGBM Ke et al. (2017) .

Readable String � Naïve Bayes Murphy et al. (200

Vapnik (1995) , MLP Collobert a

DT Witten and Frank (2002) , RF

LightGBM Ke et al. (2017) .

Header Information � MLP Collobert and Bengio (200

LightGBM Ke et al. (2017) , Naïv

Bayes Murphy et al. (2006) , SVM

Vapnik (1995) , DT Witten and F

Grayscale Image � kNN Altman (1992) , CNN Krizh

SVM Cortes and Vapnik (1995) .

CPU/Memory/IO etc.

Status

� CNN Krizhevsky et al. (2012) , k

SVM Cortes and Vapnik (1995) .

File Status � Hierarchical Clustering Franklin

CNN Krizhevsky et al. (2012) , k

SVM Cortes and Vapnik (1995) ,

Welling (2017) .

Registry Status � Hierarchical Clustering Franklin

kNN Altman (1992) , SVM Corte

Network Status � Hierarchical Clustering Franklin

CNN Krizhevsky et al. (2012) , k

SVM Cortes and Vapnik (1995) ,

Welling (2017) .

Opcode � � kNN Altman (1992) , SVM Corte

DT Witten and Frank (2002) , RN

CNN Krizhevsky et al. (2012) , H

Clustering Franklin (2005) .

System or API Calls � � RIPPER Cohen (1996) , SVM Cort

Hierarchical Clustering Franklin

CNN Krizhevsky et al. (2012) , L

Schmidhuber (1997) .

Control Flow Graph � � Naïve Bayes Murphy et al. (200

Vapnik (1995) , RF Ho (1995) , G

Welling (2017) .

Function Call Graph � � RF Ho (1995) , AutoEncoder Vin

CNN Krizhevsky et al. (2012) , G

Welling (2017) .

If the paper does not clearly name the PE malware detection, we use the author name(s

5

pace depending on the specific real-world application. In the sce-

ario of PE malware detection, the problem space Z is referred

o the space of all possible PE files, and the label space Y (e.g. ,

 = {−1 , 1 } or Y = { 0 , 1 }) denotes the space of detection labels

 e.g. , −1 or 0 denotes malware and 1 denotes goodware.)

.2.3. Feature engineering

After collecting and labeling sufficient PE samples, it is neces-

ary and important to perform somewhat feature engineering over

ll PE samples before inputting them into ML/DL models, as ML/DL

odels can only accept numeric input. Feature engineering aims to

xtract the intrinsic properties of PE files that are most likely to be

sed for distinguishing malware from goodware, and then gener-

tes corresponding numeric features for representation. From dif-

erent perspectives of properties of PE files, there is a large body of

ork on extracting various features, which can be generally cate-

orized into three broad category: static features, dynamic features

nd hybrid features (Ceschin et al., 2020; Raff and Nicholas, 2020;

e et al., 2017) and summarized in Table 1 .
hitectures Representative PE MalwareDetection Methods ∗

6) , SVM Cortes and

rank (2002) ,

4) ,

Schultz et al. (2001) , Kolter and Maloof (2006) ,

Saxe and Berlin (2015) , Gibert et al. (2018) ,

MalConv Raff et al. (2017) , EMBER Anderson and

Roth (2018) .

6) , SVM Cortes and

nd Bengio (2004) ,

 Ho (1995) ,

Schultz et al. (2001) , SBMDS Ye et al. (2009) ,

Islam et al. (2010) , Saxe and Berlin (2015) ,

EMBER Anderson and Roth (2018) .

4) ,

e

 Cortes and

rank (2002) .

Saxe and Berlin (2015) , EMBER Anderson and

Roth (2018) , PE-Miner Shafiq et al. (2009) .

evsky et al. (2012) ,

Nataraj et al. (2011b) , Kim (2017) ,

Visual-AT Liu et al. (2020) .

NN Altman (1992) ,

Rieck et al. (2008) , AMAL Mohaisen et al. (2015) ,

Abdelsalam et al. (2018) .

 (2005) ,

NN Altman (1992) ,

 GNN Kipf and

Bailey et al. (2007) , Rieck et al. (2008) ,

AMAL Mohaisen et al. (2015) ,

Abdelsalam et al. (2018) ,

MatchGNet Wang et al. (2019) .

 (2005) ,

s and Vapnik (1995) .

Bailey et al. (2007) , Rieck et al. (2008) ,

AMAL Mohaisen et al. (2015) .

 (2005) ,

NN Altman (1992) ,

 GNN Kipf and

Bailey et al. (2007) , Rieck et al. (2008) ,

AMAL Mohaisen et al. (2015) ,

Abdelsalam et al. (2018) ,

MatchGNet Wang et al. (2019) .

s and Vapnik (1995) ,

N Cho et al. (2014) ,

ierarchical

AMCS Ye et al. (2010) , Santos et al. (2013) ,

IRMD Zhang et al. (2016) , RMVC Sun and Qian (2018) .

es and Vapnik (1995) ,

 (2005) ,

STM Hochreiter and

Schultz et al. (2001) , SBMDS Ye et al. (2009) ,

Rieck et al. (2008) , Qiao et al. (2013) ,

Zhang et al. (2020b) .

6) , SVM Cortes and

NN Kipf and

Kapoor and Dhavale (2016) , MAGIC Yan et al. (2019) ,

MalGraph Ling et al. (2022) .

cent et al. (2010) ,

NN Kipf and

Hassen and Chan (2017) , DLGraph Jiang et al. (2018) ,

DeepCG Zhao et al. (2019) ,

MalGraph Ling et al. (2022) .

) of the paper with its reference.

X. Ling, L. Wu, J. Zhang et al. Computers & Security 128 (2023) 103134

P

s

g

d

t

(

t

a

o

c

s

o

t

s

a

t

p

s

d

i

m

f

D

i

f

First of all, static features are directly extracted from the

E samples themselves without actually running them. For in-

tance, byte sequence, readable string, header information, and the

rayscale image are commonly used static features for PE malware

etection.

• Byte Sequence: A PE sample is essentially a binary file, which

is typically considered to be a sequence of bytes. Therefore, the

byte sequence is the most straightforward and informative way

to represent a PE file. In fact, the byte sequence can either be

directly input into DL models (Coull and Gardner, 2019; Kr ̌cál

et al., 2018; Raff et al., 2017), or be further converted into an

intermediate representation, e.g. , n-grams or entropy of byte se-

quences (Gibert et al., 2018; Kolter and Maloof, 2006; Saxe and

Berlin, 2015; Schultz et al., 2001).

• Readable String: A PE file might contain readable strings that

reflect it intentions or semantics, like file names, IP addresses,

domain names, author signatures, etc. After extracting readable

strings in a PE file, their numeric feature representation can

be a set of binary attributes (i.e. , whether the string exists),

frequencies, or even 2D histogram features (Islam et al., 2010;

Saxe and Berlin, 2015; Schultz et al., 2001; Ye et al., 2009).

• Header Information: As illustrated in Fig. 1 , the PE header infor-

mation occupies an important place to describe and normalize

the PE file globally so that it can be executed properly. In par-

ticular, simple statistics on PE header information, such as the

file size, numbers of sections, sizes of sections, the number of

imported or exported functions, etc. , are commonly used fea-

ture representations for PE malware detection (Anderson and

Roth, 2018; Saxe and Berlin, 2015; Shafiq et al., 2009).

• Grayscale Image: Since the value range of bytes in a PE file is

the same as the pixel value in an image, a visualization-based

feature engineering approach is to transform a PE file into a

grayscale image, for which each byte in a PE file corresponds to

a pixel in an image (Nataraj et al., 2011a). Inspired by the re-

cent great successes of image classification methods, a lot of

visualization-based methods have also been proposed for PE

malware detection (Kim, 2017; Liu et al., 2020; Nataraj et al.,

2011b).

Second, dynamic features refer to those features that can be ex-

racted by first running the executable in an isolated environment

 e.g. , sandbox, virtual machine, etc.) and then monitoring their run-

ime status in terms of system resources, files, registries, network,

nd others.

• System Resource Status: The execution of malware inevitably

occupies system resources (e.g. , CPU, memory, IO, etc.), whose

runtime status can be considered as dynamic features for mal-

ware detection, as a variety of malware within one specific

family might follow a relatively fixed pattern of system re-

sources during execution. In particular, CPU usage, memory us-

age, and I/O request packets are commonly monitored as dy-

namic features (Abdelsalam et al., 2018; Mohaisen et al., 2015;

Rieck et al., 2008).

• File Status: Malware normally needs to operate on files of target

users for reaching malicious intentions by attackers. Thus, log-

ging and counting for the files accessed, created, modified, or

deleted are commonly used dynamic features in malware de-

tection (Abdelsalam et al., 2018; Bailey et al., 2007; Mohaisen

et al., 2015; Rieck et al., 2008; Wang et al., 2019).

• Registry Status: Registries that store the system/application-

level configurations are important for the family of Windows

OSs. The malware could operate on registries with malicious

intentions, like self-starting malware. Similar to file status, reg-

istry status like counting the registries created, modified, and

deleted can also be regarded as dynamic features (Bailey et al.,

2007; Mohaisen et al., 2015; Rieck et al., 2008).
6
• Network Status: The spread of malware like trojans and ran-

somware mainly depends on the network. Taking trojans as an

example, they are likely to connect remote servers with cer-

tain network ports. Therefore, when diving into the specific as-

pects of network status, there is a variety of network-level in-

formation that can be used for creating a rich set of dynamic

features (Abdelsalam et al., 2018; Bailey et al., 2007; Mohaisen

et al., 2015; Rieck et al., 2008; Wang et al., 2019), such as the

number of distinct IP addresses or certain ports, the number of

different HTTP requests (e.g. , POST, GET, HEAD, PUT, etc.), the

number of common DNS record types (e.g. , PTR, CNAMN, SOA,

etc.), to name just a few.

Finally, we exemplify four commonly used hybrid features, i.e. ,

pcode, system/API calls, control flow graph (CFG), and function

all graph, which can be extracted from executables with either

tatic analysis methods or dynamic analysis methods. For instance,

pcodes of executables can be obtained by either extracting from

heir disassembled instructions or monitoring their runtime in-

tructions in memory.

• Opcode: Executables, including malware, can be generally con-

sidered as a collection of instructions that are executed in a

specific order. In machine assembly language, an instruction

consists of an opcode and several operands, in which the op-

code specifies the operation to be executed and the operand

refers to the corresponding data or its memory location. As

prior studies suggest, the opcode distributions of malware sta-

tistically differ from goodware, and thus various features are

constructed from the opcodes, such as their frequency, n-grams

of opcode sequences, or even opcode images (Santos et al.,

2013; Sun and Qian, 2018; Ye et al., 2010; Zhang et al., 2016).

• System/API Calls: System/API calls refer to how executables in-

teract with system-level or application-level libraries in the

family of Windows OSs. Similar to the opcode, various fea-

ture representations are thus constructed from system/API calls,

such as the frequency of system/API calls, and n-grams of sys-

tem/API call sequences (Qiao et al., 2013; Rieck et al., 2008;

Schultz et al., 2001; Ye et al., 2009; Zhang et al., 2020b).

• CFG: The CFG is a graph-based feature representation that is

commonly used to characterize the control flow of executables,

including PE malware (Kapoor and Dhavale, 2016; Yan et al.,

2019). Building from assembly instructions of executables, each

node in the CFG represents a sequence of instructions without

branching and each edge represents the control flow path be-

tween two nodes (Ling et al., 2021a).

• Function Call Graph: The function call graph (Ryder, 1979)

that attempts to build the caller-callee relation between differ-

ent functions (including system/API or user-implemented func-

tions), is regarded as a more coarse-grained graph representa-

tion compared with CFG (Hassen and Chan, 2017; Jiang et al.,

2018; Zhao et al., 2019).

It is worth noting that, on the one hand, we just briefly review

nd categorize the commonly used features in PE malware detec-

ion, and do not attempt to cover all, which is not the goal of our

aper. On the other hand, all the features mentioned above are not

eparate or independent, they are actually mixed for PE malware

etection in the wild. In essence, the process of feature engineer-

ng can be broadly expressed as a feature mapping function that

aps the problem space into the feature space (i.e. , the numeric

eatures), which is formulated in Def. 1 as follows.

ef. 1. (Feature Mapping Function) A feature mapping function φ
s formulated as φ : Z → X , in which Z denotes the problem space

rom a specific real-world application, and X denotes the corre-

X. Ling, L. Wu, J. Zhang et al. Computers & Security 128 (2023) 103134

s

e

2

e

f

c

m

m

fi

c

h

R

f

m

l

t

a

c

d

n

e

w

D

b

t

t

p

r

c

w

t

c

w

i

m

l

t

r

3

o

t

t

P

t

3

t

p

u

M

w

i

a

t

g

w

a

3

a

i

s

x

e

t

a

f

m
s

i

d

t

t

m

b

p

f

i

P

p

m
s

i

i

f

m

s

p

v

h

i

f

3

a

k

s

i

c

k

w

t

t

m

o

h

a

B

1 There is no unified view on whether to treat the scenario of knowing the clas-

sification label with probability as the black-box attack.
ponding feature space, numerically describing the intrinsic prop-

rties of objects in the problem space.

.2.4. Learning from models and predictions

After extracting and generating the numeric features from the

xecutable, it is necessary to choose a proper ML or DL model

or PE malware detection that is generally regarded as a binary

lassification task, i.e. , predicting whether the given executable is

alware or goodware. In recent years, with the rapid develop-

ent and great success of artificial intelligence technology in many

elds like computer vision, natural language processing, and even

ode analysis Ling et al. (2021b) , a huge variety of ML/DL models

ave been continuously proposed, such as Naïve Bayes, SVM, DT,

F, MLP, CNN, RNN, LSTM, or GNN. Regardless of how diverse of

eature representation for executables, almost all kinds of ML/DL

odels mentioned have been used for PE malware detection, as

ong as the features obtained from feature engineering conform to

he input format of the corresponding ML/DL model. For instance,

n LSTM model can accept the sequence data as the input, but

annot accept the graph data, while GNN can process the graph

ata.

In essence, an ML/DL model refers to a mathematical discrimi-

ation function f with parameters to map the numeric features of

xecutables into their binary labels (i.e. , malware and goodware),

hich is broadly formulated in Def. 2 as follows.

ef. 2. (Discrimination Function) A discrimination function f can

e precisely formulated as f : X → Y , in which X denotes the fea-

ure space and Y denotes the corresponding label space.

The training process of a malware detection model is to learn

he model parameters based on a large number of training sam-

les, so that the malware detection model can approximate the

eal relationship function between the feature patterns of exe-

utables and their binary detection labels. After that, to predict

hether a given executable is malware or not, the malware de-

ection model with learned parameters can effectively and effi-

iently compute the probabilities assigned to both classes of mal-

are and goodware. In order to find the most applicable model,

t is actually quite common to test different ML/DL models for PE

alware detection depending on the specific task. In Table 1 , the

ast two columns present the representative ML/DL model archi-

ectures and corresponding PE malware detection methods with

eferences.

. Challenges of adversarial attacks for PE malware

In this section, we first introduce the general concept and tax-

nomy of adversarial attacks that have been originally and ex-

ensively studied in the domain of image classification tasks, and

hen manifest the most unique challenges of adversarial attacks for

E malware when compared with other fields like images, audios,

exts, etc.

.1. Adversarial attacks: The general concept and taxonomy

Although recent advances in ML and DL have led to break-

hroughs in a variety of long-standing real-world tasks (e.g. , com-

uter vision, natural language processing, speech recognition, etc.),

nfortunately, it has been convincingly demonstrated that existing

L and DL models are inherently vulnerable to adversarial attacks

ith carefully crafted adversarial examples. In particular, adversar-

al examples are intentionally and maliciously designed inputs that

im to mislead the given target model in the testing phrase rather

han the training phrase. Generally, adversarial attacks can be cate-

orized along multiple different dimensions. In the following part,
7
e broadly classify adversarial attacks along two dimensions, i.e. ,

dversary’s space and adversary’s knowledge.

.1.1. Adversary’s space: Feature-space attack versus problem-space

ttack

Initially, the adversarial example is explored in the context of

mage classification tasks and is normally addressed in the feature-

pace domain. In particular, for a given image classification model

f and a given input image z with feature representation x ∈ X (i.e. ,

f (x) = y), the attacker attempts to minimize the distance between

′ and x in the feature-space, such that the resulting adversarial

xample x ′ ∈ X in the feature-space can misclassify the classifica-

ion model f . This kind of adversarial attack is normally termed

s the feature-space attack , which is formulated in Eq. (1) as

ollows.

in x ′ distance (x ′ , x)
.t. x ′ ∈ X

f (x ′) = y ′ � = y
(1)

n which distance (x 1 , x 2) denotes any measurement function of

istance between x 1 and x 2 in the feature-space depending on

he actual applications. For the feature-space attacks, as the fea-

ure representation in the feature-space is normally continuous,

ost of them generate adversarial examples based on gradients-

ase methods like FGSM, PGD, C&W, etc.

In contrast with the aforementioned feature-space attack, the

roblem-space attack refers to the adversarial attack that is per-

ormed in the problem-space, i.e. , how to “modify” the real-world

nput z ∈ Z with a minimal cost (e.g. , executables, source code,

DF, etc.) such that the generated adversarial example z ′ ∈ Z in the

roblem-space can also misclassify the target model f as follows.

in z ′ cost (z ′ , z)
.t. z ′ ∈ Z

f (φ(z ′)) = y ′ � = y
(2)

n which cost (z 2 , z 1) denotes any cost function that transforms z 1
nto z 2 in the problem-space of the specific application.

When comparing the problem-space attack in Eq. (2) with the

eature-space attack in Eq. (1) , it is easy to find the most funda-

ental and noticeable difference between them is, the problem-

pace attack involves a feature mapping function φ that maps the

roblem-space into the feature-space, which is usually neither in-

ertible nor differentiable. Therefore, the problem-space attack can

ardly use gradient-based methods directly to generate adversar-

al examples. In Fig. 3 , we illustrate the connection between the

eature-space attack and the problem-space attack.

.1.2. Adversary’s knowledge: White-box attack versus black-box

ttack

Adversary’s knowledge specifies what we assume the adversary

nows about the target model to be attacked. In terms of adver-

ary’s knowledge, adversarial attacks can be further categorized

nto the white-box attack and the black-box attack . To be spe-

ific, the white-box attack refers to the scenario that the attackers

now all information about the target model (e.g. , architectures,

eights/parameters, outputs, features, etc.) as well as the dataset

o train the target model. By contrast, the black-box attack refers

o the scenario that the attackers know nothing about the target

odel except the model output, e.g. , the classification label with

r without probability. 1 Apparently, the black-box attack is much

arder to satisfy than the white-box attack since the white-box

ttack is equipped with more knowledge about the target model.

esides, there is a wide spectrum between the white-box attack

X. Ling, L. Wu, J. Zhang et al. Computers & Security 128 (2023) 103134

Fig. 3. Illustration of the connection between the feature-space attack and the problem-space attack , in which the feature mapping function φ and the inverse feature

mapping function φ−1 act as bridges for transitions between the feature-space and the problem-space.

a

g

c

d

d

3

F

a

s

m

s

p

r

i

i

v

c

t

e

d

f
Fig. 4. The schematic illustration of the feature-space attack versus the problem-

space attack for PE malware, in which the original PE malware z is manipulated

in the problem-space to continuously generate the adversarial PE malware (i.e. , z ′ 1 ,
z ′ 2 , z ′ 3 and z ′), while the corresponding PE malware feature x in the feature-space

is mapped to continuously generate adversarial PE malware features (i.e. , x ′ 1 , x ′ 2 , x ′ 3
and x ′).

p

t

p

a

nd the black-box attack, which is usually broadly referred as the

ray-box attack. Therefore, for any gray-box attack, it is signifi-

antly necessary to show to what extent the adversary knows and

oes not know about the target model as well as the training

ataset.

.2. Three unique challenges of adversarial attacks for PE malware:

rom feature-space to problem-space

Originally, adversarial attacks are explored in the domain of im-

ge classification tasks and a variety of feature-space attacks are

ubsequently proposed to generate adversarial examples for the

alicious purpose of misclassification, e.g. , misclassifying a Per-

ian cat into a lionfish with a high probability of 99.8% as de-

icted in Fig. 3 . Actually, the main reason for the success of di-

ectly performing the feature-space attack to generate adversar-

al examples of images is that, it is easy to find the correspond-

ng image z ′ from the generate adversarial feature x ′ via the in-

erse feature mapping function φ−1 (i.e. , z ′ = φ−1 (x ′)), as indi-

ated in Fig. 3 . However, when considering the adversarial at-

acks for the PE files, the circumstance becomes completely differ-

nt and extremely challenging due to the problem-feature space

ilemma Quiring et al. (2019) , which is mainly manifested in the

ollowing two aspects.

1. The feature mapping function φimage for images is relatively

fixed (i.e. , an image can be formatted as a two-dimensional ar-

ray of pixels where each pixel value is a three-dimensional RGB

vector with a continuous value between 0 to 255), while the

feature mapping function φpe for PE files is not fixed and can

take various and diverse approaches of feature engineering as

detailed in § 2.2.3 . Especially in the setting of black-box attacks,

the attacker cannot know the specific feature mapping function

φpe for PE files, which greatly increases the difficulty of adver-

sarial attacks for PE files.

2. For images, although the inverse feature mapping function

φ−1
image

is not exactly bi-injective (e.g. , the pixel value might not

be in the range of 0 to 255), it is continuously differentiable,

and thus the feature-space attack based on gradients can di-

rectly apply on images to generate adversarial examples. How-
8
ever, for various different feature mapping functions of PE files,

to map a feature vector in the feature-space into an executable

in the problem-space, it is almost impossible to find an exact

or approximate function of inverse feature mapping φ−1
pe that is

either bi-injective or differentiable.

As depicted in Fig. 4 , in order to generate adversarial exam-

les for PE files, although there is a variety of adversarial attacks

hat exploit the feature-space attacks based on gradients have been

roposed, we argue that these adversarial attacks are impractical

nd unrealistic against PE malware detection in the wild world.

X. Ling, L. Wu, J. Zhang et al. Computers & Security 128 (2023) 103134

Fig. 5. The schematic illustration of relationship between the three unique chal-

lenges of adversarial attacks for PE malware, i.e. , format-preserving, executability-

preserving and maliciousness-preserving .

T

v

t

c

t

c

a

t

o

i

i

f

p

c

w

P

s

a

d

p

o

T

d

s

w

i

o

t

a

3

m

c

l

t

f

t

m

p

g

fi

m

o

f

s

i

3

(

p

p

t

m

a

d

a

e

fl

P

H

f

s

3

(

m

P

w

a

s

m

m

a

h

e

p

m

d

o

o

t

b

t

t

e

b

t

t

p

a

m

i

i

m

e

f

4

o

i

p

s

e

e

his is because what these adversarial attacks generate is the “ad-

ersarial PE feature” rather than the “adversarial PE malware” in

he end, and an “adversarial PE feature” does not guarantee to

orrespond to an “adversarial PE malware” due to the following

wo reasons. On the one hand, it is almost impossible to find a

orresponding adversarial PE malware z ′ based on the generated

dversarial PE feature x ′ , as the inverse feature mapping func-

ion φ−1
pe is normally neither bi-injective nor differentiable. On the

ther hand, even though we could find the exact PE malware z ′
n the problem-space that corresponds to the generate adversar-

al feature x ′ in the feature-space, there is no guarantee that the

ound z ′ is also “adversarial”. Taking the x ′
3

in Fig. 4 as an exam-

le, although its feature representation x ′ 3 in feature-space is mis-

lassified as benign (i.e. , f (x ′
3
) = 0), but its corresponding PE mal-

are object z ′
3

in problem-space is still detected as malicious (i.e. ,

f (φ(z ′ 3)) = 1 � = 0).

Therefore, to further generate practical and realistic adversarial

E malware against malware detection in the wild, one of the pos-

ible or even the only way so far is to seek for the problem-space

ttack to generate adversarial PE malware in the problem-space as

efined in Eq. (2) . To be specific, as depicted in Fig. 4 , current

roblem-space attacks normally attempt to find and apply a series

f self-defined problem-space transformations (i.e. , T 1 , T 2 , T 3 and

 4) that sequentially transform the original PE malware z into the

esired adversarial PE malware z ′ (i.e. , z
T 1 −→ z ′

1

T 2 −→ z ′
2

T 3 −→ z ′
3

T 4 −→ z ′),
uch that ❶ z ′ is no longer detected as malicious by the target mal-

are detection, and ❷ z ′ maintains the same semantics as the orig-

nal z. In the following parts, we detail the three unique challenges

f maintaining the semantics of adversarial PE malware for prac-

ical and realistic adversarial attacks against PE malware detection

nd present the relationship between the three challenges in Fig. 5 .

.2.1. Challenge 1: Follow the format of PE files (format-preserving)

First of all, unlike images, audio, or even texts, PE malware

ust follow the standard and strict format rules of PE files. As

haracterized in Fig. 1 , the PE file normally has a relatively fixed

ayout and structure that is necessary to first load the PE file in

he system memory and then begin to execute it in the Microsoft

amily of Windows OSs. Therefore, for PE files, their problem-space

ransformations should be defined within the scope of the for-

at specification requirements, i.e. , format-preserving. For exam-

le, one of the transformations that add a new section within the

roup of Header Information will definitely violate the format of PE

les, while adding a new section inside the group of Section Infor-

ation is acceptable in terms of the format of PE files. In order to

vercome the challenge of format-preserving, one of the straight-

orward and non-trivial approaches is to carefully check and in-
9

pect each candidate transformation according to the formal spec-

fication of PE format under the family of Windows OSs.

.2.2. Challenge 2: Keep the executability for PE files

 executability-preserving)

Although one generated adversarial PE malware is format-

reserving, it does not necessarily mean it is executability-

reserving as well, which is one of the most challenging proper-

ies to be addressed in generating adversarial PE malware. This is

ainly because, the format of PE files only determines its layout

nd structure under standard specifications, but cannot particularly

etermine the concrete content of each element inside the layout

nd structure, and thus cannot guarantee that they can be prop-

rly executed. For example, applying a simple transformation of

ipping on byte or even one bit in the “.data” section of a given

E file usually does not violate the format specifications of PE files.

owever, it is very likely to cause a runtime crash for the trans-

ormed PE file as it cannot load the necessary data from the “.data”

ection, thereby preventing its normal execution.

.2.3. Challenge 3: Keep the same maliciousness for PE malware

 maliciousness-preserving)

Recall that the ultimate goal of adversarial attacks against PE

alware detection is to generate practical and realistic adversarial

E malware, which could not only misclassify the target PE mal-

are detection model, but also can keep the same maliciousness

s the original PE malware. However, again one generated adver-

arial malware that preserves the executability does not necessarily

ean it still preserves the sample maliciousness as the original PE

alware, i.e. , maliciousness-preserving. Suppose that the generated

dversarial malware cannot perform the same maliciousness be-

aviors (e.g. , deleting or encrypting files, modifying registry items,

tc.) as the original PE malware, it is totally meaningless and un-

rofitable for the adversary in the wild. Therefore, the property of

aliciousness-preserving is another significant challenge to be ad-

ressed in generating adversarial PE malware.

In short, to address the two aforementioned challenges

f executability-preserving and maliciousness-preserving , most

f the proposed problem-space attacks claim all transforma-

ions adopted are format/executability/maliciousness-preserving,

ut only with limited inspection and analysis on every specific

ransformation in either concept or empiric. Furthermore, due

o the complexity of both PE malware and the corresponding

xecutable environments, we argue that it is almost impossi-

le to theoretically prove whether the proposed adversarial at-

acks can generate successful adversarial PE malware that satisfies

he two properties of executability-preserving and maliciousness-

reserving. Alternatively, empirical verification has been reason-

bly employed in evaluating both executability-preserving and

aliciousness-preserving. In particular, if the generated adversar-

al PE malware can be properly executed and its runtime status

s basically consistent with the runtime status of the original PE

alware in the same simulated environments (e.g. , sandbox), both

xecutability-preserving and maliciousness-preserving can there-

ore be empirically and reasonably concluded.

. Adversarial attacks against PE malware detection: The state

f the art

In order to explore the most promising advances of adversar-

al attacks against PE malware detection, in this section, we com-

rehensively and systematically categorize state-of-the-art adver-

arial attacks from different viewpoints, i.e. , adversary’s knowl-

dge, adversary’s space, target malware detection, and attack strat-

gy. Fig. 6 illustrates the general category of adversarial attacks

X. Ling, L. Wu, J. Zhang et al. Computers & Security 128 (2023) 103134

Fig. 6. The General Category of Adversarial Attacks against PE Malware Detection.

a

s

s

t

t

s

d

4

t

w

t

v

(

b

v

4

a

t

s

t

d

i

m

t

m

r

K

o

w

s

e

F

T

t

s

l

a

a

a

s

t

o

a

p

s

t

c

t

s

i

m

b

t

F

f

p

s

o

s

p

E

b

a

t

p

w

e

gainst PE malware detection of this paper. In the following sub-

ections, in terms of the adversary’s knowledge (i.e. , white-box ver-

us black-box), we will first introduce the white-box adversarial at-

acks against PE malware detection in § 4.1 , and then introduce

he black-box adversarial attacks in § 4.2 . Finally, we highlight the

ummary of state-of-the-art adversarial attacks against PE malware

etection in § 4.3 .

.1. White-box adversarial attacks against PE malware detection

Recall that in § 3.1 , the white-box attack refers to the scenario

hat the adversary knows full information about the target mal-

are detectors, including architectures, parameters, feature space,

he training dataset, etc. In the following parts, we first further di-

ide the white-box attacks into the feature-space white-box attacks

in § 4.1.1) and the problem-space white-box attacks (in § 4.1.2)

ased on their corresponding adversary’s space (i.e. , feature-space

ersus problem-space).

.1.1. Feature-space white-box attacks against PE malware detection

In this part, we focus on the feature-space white-box attacks

gainst PE malware detection, in which all adversarial manipula-

ions (e.g. , adding irrelevant API calls) are performed in the feature

pace of PE malware (e.g. , the API call list). In particular, to bet-

er understand all feature-space white-box attacks in the face of

ifferent kinds of PE malware detection models, we group them

nto the following categories according to the different types of PE

alware detection models, including raw byte based malware de-

ectors, API call list based malware detectors, visualization based

alware detectors, and other miscellaneous malware detectors.

Raw Bytes based Malware Detectors. In order to evade the

aw bytes based malware detector like MalConv (Raff et al., 2017),

reuk et al. (2018) consider appending or injecting a sequence

f bytes, namely the adversarial payload, to the end of PE mal-

are or the slack region, i.e. , existing unused continuous bytes of

ections in the middle of PE malware. First, they iteratively gen-

rate the adversarial payload with the gradient-based method of

GSM (Goodfellow et al., 2015) in the continuous feature space.
10
hen, to generate the practical adversarial PE malware, they at-

empt to reconstruct back to the input problem space by directly

earching the closest neighbor to the generated adversarial pay-

oad.

Similarly, Suciu et al. (2019) extend the FGSM-based adversarial

ttacks with two previously proposed strategies (i.e. , append-FGSM

nd slack-FGSM Kreuk et al. (2018)), and further perform a system-

tic evaluation to compare the effectiveness of both append and

lack strategies against MalConv. Their experimental results show

hat slack-FGSM outperforms append-FGSM with a smaller number

f modified bytes. Possible reasons are that the appended bytes of

ppend-FGSM might exceed the maximum size of the model in-

ut (e.g. , 2MB for MalConv), or that slack-FGSM can make use of

urrounding contextual bytes to amplify the power of FGSM since

he CNN-based MalConv detector requires the consideration of the

ontextual bytes within the convolution window.

Chen et al. (2019) suggest that all those adversarial at-

acks (Kreuk et al., 2018; Suciu et al., 2019) append or inject adver-

arial bytes that are first initialized by random noises and further

teratively optimized, which might lead to inferior attack perfor-

ance. To address this issue, Chen et al. propose two novel white-

ox attacks (i.e. , BFA and Enhanced-BFA) with the saliency vec-

or generated by the Grad-CAM approach (Selvaraju et al., 2017).

or BFA, it selects the data blocks with significant importance

rom benign PE files using computed saliency vectors and then ap-

ends those data blocks to the end of the original PE malware. Be-

ides that, Enhanced-BFA is presented to use FGSM to iteratively

ptimize these perturbations generated by BFA. Experimental re-

ults show that Enhanced-BFA and BFA have comparative attack

erformances when the number of appending bytes is large, but

nhanced-BFA is ten times more effective than BFA when the num-

er of appending bytes is small.

Qiao et al. (2022) propose a white-box adversarial attack

gainst raw bytes based malware detectors like MalConv. In par-

icular, it first generates a prototype sample to maximize the out-

ut of malware detection model towards the target class (i.e. , mal-

are) by directly applying the gradient descent algorithm. Next, to

nsure that the generated adversarial PE malware preserves both

X. Ling, L. Wu, J. Zhang et al. Computers & Security 128 (2023) 103134

e

i

s

s

e

o

e

D

w

D

T

a

t

b

d

a

s

I

w

i

G

a

a

f

a

n

fl

a

i

t

D

fl

c

t

t

T

i

W

c

a

s

a

W

g

s

e

P

C

w

g

e

t

m

a

P

t

S

b

fi

i

P

m

o

a

L

O

c

e

t

s

i

P

a

s

m

p

i

4

a

o

t

n

p

a

w

b

(

w

a

o

w

m

t

g

C

D

n

a

t

s

a

s

A

t

t

a

t

n

t

t

e

t

a

p

l

t

a

m

t

S

xecutability and maliciousness as the input PE malware, it mod-

fies the modifiable part of input PE malware (i.e. , bytes between

ections, bytes at the end of PE files, and bytes in the newly added

ection) in a fine-grained manner under the guidance of the gen-

rated prototype sample.

API Call List based Malware Detectors. By flipping the bits

f the binary feature vector of malware (“1” denotes the pres-

nce of one Windows API call and “0” denotes the absence), Al-

ujaili et al. introduce four kinds of white-box adversarial attacks

ith k multi-steps, namely dFGSM

k , rFGSM

k , BGA

k , and BCA

k Al-

ujaili et al. (2018) , to attack API call list based malware detectors.

o be specific, dFGSM

k and rFGSM

k are two white-box adversarial

ttacks that are adapted mainly from the FGSM attack in the con-

inuous feature-space (Goodfellow et al., 2015; Kurakin et al., 2017)

ut extended for the binary feature space via deterministic or ran-

omized rounding, respectively. BGA

k and BCA

k are two gradient

scent based attacks that update multiple bits or one bit in each

tep, respectively.

As the winner of “Robust Malware Detection Challenge” (MIT-

BM Watson AI Lab, 2019) in both attack and defense tracks, Ver-

er et al. Verwer et al. (2020) propose a novel white-box adversar-

al attack with greedy random accelerated multi-bit search, namely

RAMS, which generates functional adversarial API call features

nd also builds a more robust malware detector in a standard

dversarial training setting. The main idea of GRAMS is to per-

orm a greedy search procedure that explores gradient information

s the heuristic to indicate which bits to flip among all the bi-

ary search space (i.e. , 22,761 API calls). At each iteration, GRAMS

ips k bits of API calls that have the largest absolute gradient

nd exponentially increases or decreases the value of k depend-

ng on whether GRAMS finds a better or worse solution. To ensure

he functionality of the generated adversarial malware, both Al-

ujaili et al. (2018) and Verwer et al. (2020) limit the attack to

ipping ‘0’ to ‘1’, meaning both of them only add irrelevant API

alls.

Visualization based Malware Detectors. Differently, to attack

he visualization-based malware detectors, Liu et al. (2019) propose

he first white-box adversarial attack approach, namely Adversarial

exture Malware Perturbation Attack (ATMPA), based on adversar-

al attacks in the domain of image classification tasks (Carlini and

agner, 2017; Goodfellow et al., 2015). In particular, ATMPA first

onverts the malware sample to a binary texture grayscale image

nd then manipulates the corresponding adversarial example with

ubtle perturbations generated from two existing adversarial attack

pproaches - FGSM (Goodfellow et al., 2015) and C&W (Carlini and

agner, 2017). However, the major limitation of ATMPA is that the

enerated adversarial grayscale image of the malware sample de-

troys the structure of the original malware and thus cannot be

xecuted properly, which makes ATMPA unpractical for real-world

E malware detection.

Similar to ATMPA, Khormali et al. present an adversarial attack

OPYCAT (Khormali et al., 2019) against visualization based mal-

are detectors with CNNs. COPYCAT also makes use of existing

eneric adversarial attacks (e.g. , FGSM, PGD, C&W, MIM, DeepFool,

tc.) to generate an adversarial image. After that, COPYCAT appends

he generated adversarial image to the end of the original image of

alware rather than directly adding it to the original malware im-

ge.

Differently, to evade visualization based malware detectors,

ark et al. (2019) propose another adversarial attack based on

he adversarial malware alignment obfuscation (AMAO) algorithm.

pecifically, a non-executable adversarial image is first generated

y the off-the-shelf adversarial attacks in the field of image classi-

cation (Carlini and Wagner, 2017; Goodfellow et al., 2015). Then,

n order to attempt to preserve the executability, the adversarial

E malware is finally generated by the AMAO algorithm that mini-
11
ally inserts semantic NOP s at the available insertion points of the

riginal malware such that the modified PE malware is as similar

s possible to the generated no-executable adversarial image.

Other Miscellaneous Malware Detectors. In Li et al. (2020a) ,

i et al. first train ML-based malware detection models based on

pCode n-gram features, i.e. , the n-gram sequence of operation

odes extracted from the disassembled PE file. Then, the authors

mploy an interpretation model of SHAP (Lundberg and Lee, 2017)

o assign each n-gram feature with an importance value and ob-

erve that the 4-gram “move + and + or + move” feature is a typ-

cal malicious feature as it almost does not appear in the benign

E samples. Thus, based on this observation, the authors consider

 generation method of adversarial PE malware by instruction sub-

titution. For instance, the “move + and + or + move” in 10 sampled

alware samples can be replaced with “push + pop + and + or +

ush + pop”, which can be used to bypass the malware detectors

n their evaluation.

.1.2. Problem-space white-box attacks against PE malware detection

Different from these aforementioned feature-space adversarial

ttacks that operate in the feature space, there is a growing body

f work being proposed to perform problem-space adversarial at-

acks against PE malware detection. To be specific, since it is tech-

ically feasible to directly modify the raw bytes of PE files with

ossible constraints, almost all existing problem-space white-box

ttacks target at raw byte based malware detectors (e.g. , MalConv),

hich are detailed as follows.

In Kolosnjaji et al. (2018) , Kolosnjaji et al. introduce a gradient-

ased white-box attack to generate adversarial malware binaries

AMB) against MalConv. To ensure the generated adversarial mal-

are binaries behave identically to the original malware as much

s possible, they consider one semantic-preserving manipulation

f appending the generated bytes at the end of the original mal-

are file. The appended bytes are generated by a gradient-descent

ethod of optimizing the appended bytes to maximally increase

he probability of the appended PE malware that is predicted as

oodware.

To unveil the main characteristics learned by Mal-

onv to discriminate PE malware from benign PE files,

emetrio et al. (2019) employ the integrated gradient tech-

ique Sundararajan et al. (2017) for meaningful explanations

nd find that MalConv is primarily based on the characteris-

ics learned from PE header rather than malicious content in

ections. Motivated by the observation, they further present

 variant gradient-based white-box attack that is almost the

ame as Kolosnjaji et al. (2018) . The only difference is that,

MB (Kolosnjaji et al., 2018) injects adversarial bytes at the end of

he PE file while this work is limited to changing the bytes inside

he specific DOS header in the PE header.

In Demetrio et al. (2020b) , Demetrio et al. propose a general

dversarial attack framework (RAMEn) against PE malware detec-

ors based on two novel functionality-preserving manipulations,

amely Extend and Shift , which inject adversarial payloads by ex-

ending the DOS header and shifting the content of the first sec-

ion in PE files, respectively. In fact, the adversarial payload gen-

ration can be optimized in both white-box and black-box set-

ings. For white-box settings, they use the same gradient-based

pproach as AMB Kolosnjaji et al. (2018) to generate adversarial

ayloads and then inject payloads via Extend and Shift manipu-

ations. It is simply noted that, for black-box settings, they use

he same genetic algorithm as Demetrio et al. (2020a) to gener-

te adversarial payloads and then inject them via Extend and Shift

anipulations.

To make it more stealthy than previous adversarial at-

acks (Demetrio et al., 2019; 2020b; Kolosnjaji et al., 2018),

harif et al. propose a new kind of adversarial attack based on

X. Ling, L. Wu, J. Zhang et al. Computers & Security 128 (2023) 103134

b

t

f

t

t

w

l

t

W

4

t

t

w

v

(

b

v

4

a

(

o

f

r

o

b

e

m

o

A

l

t

t

A

t

d

fi

t

a

n

w

i

m

f

d

p

s

a

f

t

e

A

a

R

A

i

p

w

t

t

o

r

m

t

t

i

s

m

P

b

t

p

t

a

a

e

t

b

r

m

w

m

t

s

A

a

i

v

i

v

w

p

a

a

b

s

b

A

t

o

b

b

t

c

m

i

m

p

n

b

d

p

i

f

a

d

s

F

i

i

q

inary diversification techniques which manipulate the instruc-

ions of binaries in a fine-grained function level via two kinds of

unctionality-preserving transformations, i.e. , in-place randomiza-

ion and code displacement Lucas et al. (2021) . In order to guide

he transformations that are applied to the PE malware under the

hite-box setting, they use a gradient ascent optimization to se-

ect the transformation only if it shifts its embeddings in a direc-

ion similar to the gradient of the attack loss function (Carlini and

agner, 2017) with respect to its embeddings.

.2. Black-box adversarial attacks against PE malware detection

Recall that in § 3.1 , the black-box attack refers to the scenario

hat the adversary knows nothing about the target PE malware de-

ection models except the outputs, i.e. , the malicious/benign label

ith/without probability. In the following parts, we first further di-

ide the black-box attacks into the feature-space black-box attacks

in § 4.2.1) and the problem-space black-box attacks (in § 4.2.2)

ased on their corresponding adversary’s space (i.e. , feature-space

ersus problem-space).

.2.1. Feature-space black-box attacks against PE malware detection

In this part, we focus on the feature-space black-box attacks

gainst PE malware detectors, in which all adversarial operations

 e.g. , insert irrelevant API calls) are performed in the feature space

f PE malware (e.g. , the API call sequence) instead of being per-

ormed in the PE malware themselves. As the feature-space attacks

ely on the different f eature representations from different types

f PE malware detectors, we thus group all existing feature-space

lack-box attacks into the following categories according to differ-

nt types of PE malware detectors, including API call list based

alware detectors, API call sequence based malware detectors, and

ther miscellaneous malware detectors.

It is worth noting that we distinguish the API call list from the

PI call sequence for PE malware detectors as follows. The API call

ist is a binary feature (i.e. , ‘1’ or ‘0’), indicating whether or not

he PE file calls the specific API. The API call sequence represents

he sequence of APIs sequentially that is called by the PE file. The

PI call list can be extracted by either static or dynamic analysis

echniques while the API call sequence can only be extracted by

ynamic analysis techniques.

API Call List based Malware Detectors. (Hu and Tan, 2017b)

rst present a black-box adversarial attack MalGAN based on GAN

o attack PE malware detectors based on the API call list. MalGAN

ssumes the adversary knows the complete feature space (i.e. , bi-

ary features of the 160 system-level API calls) of the target mal-

are detector and considers only adding some irrelevant API calls

nto the original malware sample for generating the adversarial

alware samples in the feature space. MalGAN first builds a dif-

erentiable substitute detector to fit the target black-box malware

etector and then trains a generator to minimize the malicious

robability of generated adversarial malware predicted by the sub-

titute detector. Subsequently, Kawai et al. (2019) further present

n Improved-MalGAN after addressing several issues of MalGAN

rom a realistic viewpoint. For instance, Improved-MalGAN trains

he MalGAN and the target black-box malware detector with differ-

nt API call lists while the original MalGAN trains with the same

PI call list.

In Chen et al. (2017) , Chen et al. introduce another black-box

dversarial attack, namely EvnAttack. EvnAttack first employs Max-

elevance (Peng et al., 2005) to calculate the importance of each

PI call in classifying PE malware or goodware based on the train-

ng set and then ranks those API calls into two sets: M and B . In

articular, M contains API calls that are highly relevant to malware,

hile B contains API calls that are highly relevant to goodware. In-

uitively, EvnAttack is a simple and straightforward attack method
12
hat manipulates the API call list by either adding the API calls in B

r removing the ones in M. Specifically, EvnAttack employs a bidi-

ectional selection algorithm that greedily selects API calls for the

anipulation of addition or removal based on the fact that how

he manipulation influences the loss of the target PE malware de-

ector.

API Call Sequence based Malware Detectors. Aiming at attack-

ng RNN-based malware detection models that take the API call

equence as the input, Hu and Tan (2017a) propose a generative

odel based black-box adversarial attack to evade such RNN-based

E malware detectors. In particular, a generative RNN is trained

ased on PE malware to generate an irreverent API call sequence

hat will be inserted into the original API call sequence of the in-

ut PE malware, while a substitute RNN model is trained to fit the

arget RNN-based malware detector based on both benign samples

nd the gradient information of malware samples from the gener-

tive RNN model.

In Rosenberg et al. (2018) , Rosenberg et al. propose a generic

nd-to-end attack framework, namely GADGET, against state-of-

he-art API call sequence-based malware detectors under black-

ox settings by the transferability property. GADGET is car-

ied out in three steps: i) GADGET first trains a surrogate

odel to approximate the decision boundaries of the target mal-

are detector by using the Jacobian-based dataset augmentation

ethod (Papernot et al., 2017). ii) it then performs a white-box at-

ack on the surrogate model to generate the adversarial API call

equence by restricting the insertion of API calls into the original

PI call sequence. In more detail, GADGET first randomly selects

n insert position and then uses a heuristic searching approach to

teratively find and insert the API calls such that the generated ad-

ersarial sequence follows the direction indicated by the Jacobian.

ii) to generate practical adversarial malware samples from the ad-

ersarial API call sequence, GADGET uses a proxy wrapper script to

rap the original malware by calling the additional APIs with valid

arameters in the corresponding position based on the generated

dversarial API call sequence.

Fadadu et al. (2019) propose an executable level evasion (ELE)

ttack under black-box settings to evade PE malware detectors

ased on the API call sequence. The manipulation of ELE is re-

tricted only to the addition of new API calls, which are chosen

y maximizing the fraction of sub-sequences that have the added

PI call in the domain of benign samples and minimizing the frac-

ion of sub-sequences that have the added API call in the domain

f malware samples. To further make the modified PE malware can

e executed properly, ELE uses a novel IAT (i.e. , Import Address Ta-

le) hooking method to redirect the control in the adversarial code

hat is attached to the PE malware. In particular, the adversarial

ode contains a wrapper function that not only has identical argu-

ents and returns values with the original API function, but also

nvokes the added API function that is periodically called by the PE

alware.

Following GADGET, Rosenberg et al. (2020b) subsequently pro-

ose and implement an end-to-end adversarial attack framework,

amely BADGER, which consists of a series of query-efficient black-

ox attacks to misclassify such API call sequence-based malware

etector as well as minimize the number of queries. Basically, to

reserve the original functionality, the proposed attacks are lim-

ted to only inserting API calls with no effect or an irrelevant ef-

ect, e.g. , opening a non-existent file. To solve the problem of which

nd where the API calls should be inserted in, the authors propose

ifferent attacks with or without knowledge of output probability

cores, i.e. , the score-based attack and the decision-based attack.

or the score-based attack, it uses the self-adaptive uniform mix-

ng evolutionary algorithm (Dang and Lehre, 2016) to optimize the

nsertion position with the API calls generated by a pre-trained Se-

GAN that has been trained to mimic API call sequences of benign

X. Ling, L. Wu, J. Zhang et al. Computers & Security 128 (2023) 103134

s

t

f

e

e

i

2

d

m

a

s

u

o

m

f

t

t

s

S

t

t

i

u

t

S

o

4

s

i

u

i

d

t

t

n

P

w

a

l

h

n

2

o

l

b

e

b

n

f

W

t

t

c

m

t

P

w

p

p

w

2

e

a

g

p

m

e

C

m

s

m

i

i

m

fi

e

i

a

i

o

o

D

w

p

F

s

t

g

t

t

c

p

N

t

D

t

b

g

t

o

t

t

t

v

f

t

w

q

l

i

p

m

i

d

t

m

fl

E

W

b

f

b

amples. For the decision-based attack, it selects a random inser-

ion position and then inserts the API call with the same position

rom the pre-trained SeqGAN. Finally, to make the attacks query-

fficient, they first insert a maximum budget of API calls and then

mploy a logarithmic backtracking method to remove some of the

nserted API calls as long as evasion is maintained.

Other Miscellaneous Malware Detectors. (Rosenberg et al.,

020a) present a transferability-based black-box attack against tra-

itional ML-based malware detection models (e.g. , EMBER) by

odifying the features instead of just adding new features (e.g. ,

dding API calls) like previous attacks. The authors first train a sub-

titute model to fit the target black-box malware detector and then

se the explainable algorithm to obtain a list of feature importance

f the detection result of the original malware on the substitute

odel. Subsequently, the authors modify those easily modifiable

eatures with a list of predefined feature values and select a par-

icular value that results in the highest benign probability.

Aiming at attacking graph-based (i.e. , CFG) malware detec-

ors Yan et al. (2019) , Zhang et al. (2020a) introduce the first

emantic-preserving RL-based black-box adversarial attack named

RL. To preserve the original functionality of the malware and re-

ain the structure of the corresponding control flow graph, SRL

rains a deep RL agent which could iteratively choose basic blocks

n CFG and semantic NOP s for insertion to modify the PE malware

ntil the generated adversarial malware can successfully bypass

he target malware detector. Their experimental results show that

RL achieves a nearly 100% attack success rate against two variants

f graph neural network based malware detectors.

.2.2. Problem-space black-box attacks against PE malware detection

In this part, we focus on the problem-space black-box adver-

arial attacks against PE malware detectors, in which all adversar-

al operations are performed in the problem space of PE malware

nder black-box settings, i.e. , directly operating the PE malware

tself without any consideration of its feature representation (in-

icating the problem-space) as well as the PE malware detectors

o be attacked (indicating the black-box setting). It means that, in

heory, the problem-space black-box adversarial attacks in the sce-

ario of PE malware detection are completely agnostic to specific

E malware detectors. Therefore, regardless of any kind of PE mal-

are detectors, we group the problem-space black-box adversarial

ttacks according to the attack strategies, including reinforcement

earning, randomization, the evolutionary algorithm, GAN, and the

euristic algorithm, which are detailed as follows.

Reinforcement learning based attacks. To expose the weak-

esses of current static anti-virus engines, (Anderson et al., 2018;

017) are the first to study how to automatically manipulate the

riginal PE malware such that the modified PE malware are no

onger detected as malicious by the anti-virus engines while do not

reak the format and functionality. Particularly, with only knowl-

dge of the binary detection output, they propose a completely

lack-box adversarial attack based on reinforcement learning (RL),

amely gym-malware. The gym-malware first defines 10 kinds of

ormat-preserving and functionality-preserving modifications for

indows PE files as the action space available to the agent within

he environment. Then, for any given PE malware, gym-malware

ries to learn which sequences of modifications in the action space

an be used to modify the PE malware, such that the resulting PE

alware is most likely to bypass the static anti-virus engines. Al-

hough, gym-malware has demonstrated its effectiveness against

E malware detectors, its experimental results also show that RL

ith an agent of deep Q-network (DQN) or actor-critic with ex-

erience replay (ACER) (Sutton and Barto, 2018) offers limited im-

rovement compared with the random policy.

On the basis of gym-malware, there are multiple follow-up

ork (Chen et al., 2020a; Ebrahimi et al., 2021; Fang et al.,
13
020; 2019; Labaca-Castro et al., 2021a; Li and Li, 2021; Wu

t al., 2018) proposing problem-space black-box adversarial attacks

gainst static PE malware detection models.

In particular, Wu et al. (2018) propose gym-plus based on

ym-malware with the improvement of adding more format-

reserving modifications in the action space and their experi-

ental results show that gym-plus with DQN obtains a higher

vasion rate than gym-plus with the random policy. Differently,

hen et al. (2020a) propose gym-malware-mini based on gym-

alware with a limited and smaller action space. Based on the ob-

ervation of most of the format-preserving modifications of gym-

alware and gym-plus are stochastic in nature (e.g. , the append-

ng bytes to the new section are chosen at random for simplic-

ty, etc.) and those modifications are not exactly repeatable, gym-

alware-mini makes 6 kinds of random format-preserving modi-

cations to deterministic modifications, making the RL algorithms

asier to learn better policies among limited action space.

Besides that, Fang et al. (2019) present a general framework us-

ng DQN to evade PE malware detectors, namely DQEAF, which is

lmost identical to gym-malware in methodology except for three

mplementation improvements as follows. 1) DQEAF uses a subset

f modifications employed in gym-malware and guarantees that all

f them would not lead to corruption in the modified malware; 2)

QEAF uses a vector with 513 dimensions as the observed state,

hich is much lower than that in gym-malware; 3) DQEAF makes

riority into consideration during the replay of past transitions.

ang et al. (2020) also observe that the modifications in the action

pace of gym-malware have some randomness and further found

hat most effective adversarial malware from gym-malware are

enerated by UPX pack/unpacked modifications, which could lead

o some training problems with RL due to the non-repeatability of

hose modifications. Thus, they first reduce the action space to 6

ategories having certain deterministic parameters and then pro-

ose an improved black-box adversarial attack, namely RLAttack-

et, based on the gym-malware implementation.

Ebrahimi et al. (2021) suggest that the RL-based adversarial at-

acks against PE malware detectors normally employ actor-critic or

QN, which are limited in handling environments with combina-

orially large state space. Naturally, they propose an improved RL-

ased adversarial attack framework of AMG-VAC on the basis of

ym-malware Anderson et al. (2018, 2017) by adopting the varia-

ional actor-critic, which has been demonstrated to be the state-

f-the-art performance in handling environments with combina-

orially large state space. As previous RL-based adversarial attacks

end to generate homogeneous and long sequences of transforma-

ions, Labaca-Castro et al. (2021a) thus present an RL-based ad-

ersarial attack framework of AIMED-RL as well. The main dif-

erence between AIMED-RL and other RL-based adversarial at-

acks is that AIMED-RL introduces a novel penalization to the re-

ard function for increasing the diversity of the generated se-

uences of transformations while minimizing the corresponding

engths. Li and Li (2021) suggest that existing RL-based adversar-

al attacks (Anderson et al., 2018; 2017; Fang et al., 2019) em-

loy the artificially defined instant reward function and environ-

ent, which are highly subjective and empirical, potentially lead-

ng to non-converge of the RL algorithm. Therefore, in order to ad-

ress the issue of the subjective and empirical reward function,

hey present an Inverse RL-based adversarial malware generation

ethod, namely AMG-IRL, which could autonomously generate the

exible reward function according to the current optimal strategy.

In short, compared to Chen et al. (2020a) ;

brahimi et al. (2021) ; Labaca-Castro et al. (2021a) ;

u et al. (2018) , the adversarial malware samples generated

y Fang et al. (2020, 2019) ; Li and Li (2021) are verified not only

or executability within the Cuckoo sandbox (Cuckoo Team, 2020),

ut also verified for the original maliciousness via comparing the

X. Ling, L. Wu, J. Zhang et al. Computers & Security 128 (2023) 103134

f

w

o

f

p

d

b

p

t

g

t

t

w

e

S

w

t

w

l

l

n

c

c

C

a

d

m

m

t

s

b

c

a

m

e

a

s

s

o

S

t

a

f

a

a

w

i

f

b

C

g

m

P

i

p

e

r

i

A

t

a

E

o

t

M

e

o

2

t

t

t

t

a

v

i

A

f

(

f

t

t

t

t

n

(

a

p

i

c

a

a

q

G

w

d

t

t

e

t

o

A

v

a

g

f

a

o

s

c

s

i

M

D

m

A

m

t

t

w

a

i

m

d

unction call graph between the before and after malware samples

ith IDA Pro (SHex-Rays, 2020).

Randomization based attacks. To fully automatize the process

f generating adversarial malware without corrupting the malware

unctionality under the black-box setting, Castro et al. (2019b) pro-

ose ARMED – automatic random malware modifications to evade

etection. ARMED first generates the adversarial PE malware

y randomly applying manipulations among 9 kinds of format-

reserving modifications from (Anderson et al., 2018; 2017), and

hen employs the Cuckoo sandbox to test the functionality of the

enerated adversarial malware samples. In case the functionality

est fails, the above steps would be re-start with a new round un-

il the functionality test successes.

Ceschin et al. (2019) find that packing the original PE mal-

are with a distinct packer Cheng et al. (2018) ; Telock (2020) or

mbedding the PE malware in a dropper Kwon et al. (2015) ;

hoair (2020) is an effective approach in bypassing ML-based mal-

are detectors when combined with appending goodware strings

o malware. However, some of the generated adversarial PE mal-

are suffer from either not being executed properly or being too

arge in size. To solve the challenges, the authors implemented a

ightweight dropper, namely Dropper, which first creates an entire

ew PE file to host the original PE malware and then randomly

hooses goodware strings to be appended at the end of the newly

reated PE file.

Similar to the white-box attack of Enhanced-BFA,

hen et al. (2019) also introduce another black-box version of

dversarial attack against MalConv. First, it continuously selects

ata blocks at random from goodware and appends them to PE

alware to generate adversarial PE malware. After performing

ultiple random attacks as above, it then calculates the con-

ribution degree of each data block based on the experience of

uccessful trajectories of data blocks. Finally, it appends the data

locks to the end of PE malware according to the order of their

ontribution degrees.

In Song et al. (2020) , Song et al. propose an automatic black-box

ttack framework that applies a sequence of actions to rewrite PE

alware for evading PE malware detectors. In particular, to gen-

rate adversarial malware samples with a minimal set of required

ctions from macro/micro actions, the authors employ an action

equence minimizer that consists of three steps. First, it randomly

elects macro-actions according to the previously updated weights

f actions as the action sequence to rewrite the original malware.

econd, it tries to remove some unnecessary macro-actions from

he action sequence to generate a minimized adversarial malware,

nd increases the weights of effective actions for updating. Finally,

or every macro-action in the minimized adversarial malware, it

ttempts to replace the macro-action with a corresponding micro-

ction. Besides that, the proposed framework can also help explain

hich features are responsible for evasion as every required action

n adversarial malware samples corresponds to a type of affected

eature.

Evolutionary algorithm based attacks. Following the black-

ox adversarial attack framework of ARMED Castro et al. (2019b) ,

astro et al. (2019a) propose AIMED, which employs a genetic pro-

ramming approach rather than randomization methods to auto-

atically find optimized modifications for generating adversarial

E malware. Firstly, 9 kinds of format-preserving modifications are

ntroduced and applied to the original PE malware to create the

opulation, and then each modified sample in the population is

valuated by a fitness function in terms of functionality, detection

atio, similarity, and the current number of generations. Secondly,

f the modified PE malware fails to bypass the PE malware detector,

IMED implements the classic genetic operations, including selec-

ion, crossover, and mutation, which are repeated until all gener-

ted adversarial PE malware can evade the PE malware detector.
14
xperiments demonstrate the time of generating the same number

f successful adversarial malware is reduced up to 50% compared

o the previous random based approach (Castro et al., 2019b).

Similarly, Wang and Miikkulainen (2020) propose to retrain

alConv with the adversarial PE malware, namely MDEA. To gen-

rate the adversarial malware samples, MDEA adjusts 10 kinds

f format-preserving manipulations from Anderson et al. (2018,

017) as the action space and employs a genetic algorithm to op-

imize different action sequences by selecting manipulations from

he action space until the generated adversarial malware bypasses

he target malware detectors. In particular, as some manipula-

ions are stochastic in nature, MDEA limits each manipulation with

 parameter set to make the adversarially trained models con-

erge within an acceptable time. However, the generated adversar-

al malware samples by MDEA are not tested for functionality like

IMED and ARMED.

To omit the functionality testing (e.g. , sandbox required) and

urther speed up the computation of prior work Castro et al.

2019a,b) , Demetrio et al. introduced an efficient black-box attack

ramework, namely GAMMA (Demetrio et al., 2020a). For GAMMA,

he generation approaches of adversarial malware are limited to

wo types of functionality-preserving manipulations: section injec-

ion and padding. Specifically, benign contents are extracted from

he goodware as adversarial payloads to inject either into some

ewly-created sections (section injection) or at the end of the file

padding). The main idea of GAMMA is to formalize the attack as

 constrained minimization problem which not only optimizes the

robability of evading detection, but also penalizes the size of the

njected adversarial payload as a regularization term. To solve the

onstrained minimization problem, GAMMA also employs a genetic

lgorithm, including selection, crossover, and mutation, to generate

dversarial PE malware to bypass the malware detector with few

ueries as well as small adversarial payloads.

GAN based attacks. In Yuan et al. (2020) , Yuan et al. present

APGAN, a novel GAN-based black-box adversarial attack frame-

ork that is performed at the byte-level against DL-based malware

etection, i.e. , MalConv. Specifically, GAPGAN first trains a genera-

or and a discriminator concurrently, where the generator intends

o generate adversarial payloads that would be appended at the

nd of original malware samples, and the discriminator attempts

o imitate the black-box PE malware detector to recognize both the

riginal PE goodware and the generated adversarial PE malware.

fter that, GAPGAN uses the trained generator to generate the ad-

ersarial payload for every input PE malware and then appends the

dversarial payload to the corresponding input PE malware, which

enerates the adversarial PE malware while preserving its original

unctionalities. Experiments show that GAPGAN can achieve a 100%

ttack success rate against MalConv with only appending payloads

f 2.5% of the total length of the input malware samples.

Zhong et al. (2020) propose a convolutional generative adver-

arial network-based (C-GAN) framework, namely MalFox, which

an generate functionally indistinguishable adversarial malware

amples against realistic black-box antivirus products by perturb-

ng malware files based on packing-related methods. In general,

alFox consists of 5 components: PE Parser, Generator, PE Editor,

etector, and Discriminator, where Detector is the target black-box

alware detector (e.g. , antivirus product) and Discriminator is an

PI call-based malware detector, representing the discrimination

odel in GAN. First, the API call list (i.e. , DLL and system func-

ions) of the original malware sample is extracted as a binary fea-

ure vector by PE Parser; Second, the Generator takes both the mal-

are feature vector and a sampled 3-dimensional Gaussian noise

s input to produce a 3-dimensional perturbation path, indicat-

ng whether each of the three perturbation methods (i.e. , Obfus-

al, Stealmal, and Hollowmal) is adopted. Third, following the pro-

uced perturbation path, the PE editor generates the adversarial

X. Ling, L. Wu, J. Zhang et al. Computers & Security 128 (2023) 103134

m

t

m

o

f

p

i

g

p

c

g

m

t

d

r

b

s

t

w

m

m

m

l

o

T

a

l

t

w

i

4

t

c

f

b

e

t

W

m

a

i

l

i

b

t

i

i

n

a

m

p

i

o

t

c

t

t

m

l

f

t

g

i

s

b

f

q

o

s

d

i

a

T

p

p

A

t

fi

l

s

F

S

b

P

m

o

5

e

a

a

i

v

m

s

m

m

c

a

t

m

t

P

i

5

f

c

s

d

M

a

d

v

d

C

l

v

P

alware sample with corresponding perturbation methods. Finally,

he Generator will stop training until the generated adversarial PE

alware fails to be recognized by Discriminator.

Heuristic based attacks. Aiming to quantify the robustness

f PE malware detectors ranging from two ML-based models to

our commercial anti-virus engines, Fleshman et al. (2018) pro-

ose one novel targeted occlusion black-box attack for compar-

ng with three pre-existing evasion techniques, i.e. , random-based

ym-malware (Anderson et al., 2018; 2017), obfuscation through

acking (Aghakhani et al., 2020; Cheng et al., 2018), and mali-

ious ROP injection (Poulios et al., 2015). For the proposed tar-

eted occlusion attack, it first uses the occlusion binary search

ethod to identify the most important byte region according to

he changes of the malicious probability for a given PE malware

etector, and then replaces the identified region with completely

andom bytes or a contiguous byte region selected randomly from

enign samples. However, we believe that adversarial malware

amples generated by the targeted occlusion attack are destruc-

ive because the replacement could prevent the generated mal-

are from being executed, not to mention maintain the original

aliciousness.

Based on the two kinds of functionality-preserving transfor-

ations (i.e. , in-place randomization and code displacement) that

anipulate the instructions of binaries in a fine-grained function

evel, Lucas et al. (2021) also propose another black-box version

f adversarial attack based on a general hill-climbing algorithm.

his black-box attack is basically similar to the white-box version

nd the only difference is how the attempted transformation is se-

ected. Specifically, the black-box attack first queries the model af-

er attempting to apply one of the transformations to the PE mal-

are, and then accepts the transformation only if the correspond-

ng benign probability increases.

.3. Summary of adversarial attacks against PE malware detection

In the research field of PE malware detection, adversarial at-

ack methods have been rapidly proposed and developed in re-

ent years since 2017. For all four adversarial attack categories (i.e. ,

eature-space white-box, problem-space white-box, feature-space

lack-box, and problem-space black-box) detailed above, their gen-

rated adversarial PE malware is becoming more and more prac-

ical and effective in attacking the target PE malware detection.

e summarize the state-of-the-art adversarial attacks against PE

alware detection in Table 2 , which demonstrates the adversarial

ttack methods and their corresponding categories and character-

stics in detail.

For all white-box attacks against PE malware detection, regard-

ess of the adversary’s space (feature-space or problem-space), it

s clearly observed from Table 2 that almost all of the white-

ox attacks adopt the optimization of gradient-based methods as

heir attack strategies. Actually, gradient-based optimization and

ts variants have been widely adopted in the domain of adversar-

al attacks against image classification models Carlini and Wag-

er (2017) ; Goodfellow et al. (2015) . However, it is infeasible

nd impractical to directly apply the gradient-based optimization

ethods to generate “realistic” adversarial PE malware due to the

roblem-feature space dilemma Quiring et al. (2019) . Therefore, it

s primarily important to adapt the existing gradient-based meth-

ds (e.g. , FGSM, C&W) within constraints of feasible transforma-

ions (e.g. , append adversarial bytes, add irrelevant API calls) ac-

ording to the different types of PE malware detectors, indicating

he white-box attacks normally depend on specific malware detec-

ors.

Compared with the white-box attacks, the black-box attacks are

ore realistic and practical in the wild due to their minimal re-

iance on knowledge about the target malware detector. For the
15
eature-space black-box attacks, as they are actually performed in

he feature space of PE files, existing adversarial attack methods

enerally devise corresponding feasible transformations (e.g. , add

rrelevant API calls) for PE malware detectors with different feature

paces (e.g. , API call list based malware detectors), indicating the

lack-box attacks are normally malware detector specific. However,

or the problem-space black-box attacks with the most strict re-

uirements due to their manipulations in the problem-space, most

f them are malware detector agnostic, meaning that these adver-

arial attack methods can be used to attack any kind of PE malware

etectors in theory.

In terms of property preservation (i.e. , format, executabil-

ty, and maliciousness), for all kinds of adversarial attacks

gainst PE malware detection, it is also observed from

able 2 that most of them can only guarantee the format-

reserving rather than executability-preserving and maliciousness-

reserving. In particular, several adversarial attack methods (e.g. ,

TMPA Liu et al. (2019) , COPYCAT Khormali et al. (2019) and the

arget occlusion attack (Fleshman et al., 2018)) might destroy the

xed layout and grammar of the PE format that is necessary to

oad and execute the PE file. On the other hand, for those adver-

arial attacks like Castro et al. (2019a,b) ; Ceschin et al. (2019) ;

ang et al. (2020, 2019) ; Li and Li (2021) ; Lucas et al. (2021) ;

ong et al. (2020) , they are verified not only for the executability,

ut also verified experimentally whether the generated adversarial

E malware keeps the same maliciousness as the original PE

alware, which is strongly recommended and advocated in our

pinion.

. Adversarial defenses for PE malware detection

As various adversarial attacks continue to be proposed and

valuated, adversarial defense methods are meanwhile proposed

ccordingly. In fact, the rapid development of adversarial attacks

nd counterpart defenses constitutes a constant arms race, mean-

ng a new adversarial attack can easily inspire the defender to de-

ise a novel corresponding defense, and a newly proposed defense

ethod will inevitably lead the attacker to design a new adver-

arial attack for profit. Therefore, it is important to explore the

ost promising advances of adversarial defenses for Windows PE

alware detection against adversarial attacks. Although there are

urrently few researchers that specifically and exclusively propose

dversarial defenses for Windows PE malware detection, most of

he aforementioned research efforts on adversarial attacks might

ore or less present corresponding defense methods. In this sec-

ion, we summarize the state-of-the-art adversarial defenses for

E malware detection in recent years, mainly including adversar-

al training and several other defenses.

.1. Adversarial training

Adversarial training is one of the mainstream adversarial de-

enses to resist adversarial attacks regardless of specific appli-

ations, e.g. , image classification, natural languages processing,

peech recognition, etc. Intuitively, adversarial training refers to the

efense mechanism that attempts to improve the robustness of the

L/DL model by re-training it with the generated adversarial ex-

mples with/without original training examples. In the scenario of

efending against adversarial attacks for PE malware detection, ad-

ersarial training and its variants are also widely adopted and we

etail them as follows.

Most studies on adversarial defenses (Anderson et al., 2018;

hen et al., 2019; 2017; Hu and Tan, 2017b; Wang and Miikku-

ainen, 2020; Wu et al., 2018; Zhang et al., 2020a) based on ad-

ersarial training follow a similar procedure, in which adversarial

E malware or adversarial PE features are first generated and then

X
.
 Lin

g
,
 L.

 W
u

,
 J.
 Z

h
a

n
g
 et

 a
l.

C
o

m
p

u
ters

 &
 Secu

rity
 1

2
8
 (2

0
2

3
)
 10

313
4

Table 2

Summary of State-of-the-Art Adversarial Attacks against PE Malware Detection. WB/BB is short for the white-box attack and the black-box attack, FS/PS is short for the problem-space attack and the feature-space attack,and /

denotes emptily/fully preserving the related property. In particular, as it is almost impossible to theoretically prove both properties of executability-preserving and maliciousness-preserving, we thus use to denote that related

property is preserved neither conceptually nor empirically, to denote it is preserved both conceptually and empirically, and to denote it is only preserved conceptually but not empirically without experimental verification.

Attack Names Year

Adversary’s

Knowledge

Adversary’s

Space PE Malware Detection Attack Methods Preservation

Category Detection Name Transformation Strategy Format

Executability

(with empirical

verification)

Maliciousness (with

empirical verification)

Kreuk et al. (2018) 2018 WB FS Static MalConv Append or inject the adversarial

payload

FGSM

Suciu et al. (2019) 2019 WB FS Static MalConv Append or inject adversarial

payload

FGSM

BFA, Enhanced-BFA

Chen et al. (2019)

2019 WB FS Static MalConv Append the selected or

optimized bytes from benign PE

files

Grad-CAM or FGSM

Qiao et al. (2022) 2022 WB FS Static MalConv Append or inject adversarial

payload

Gradient-based

dFGSM

k , rFGSM

k , BGA k ,

BCA k

Al-Dujaili et al. (2018)

2018 WB FS Static API call list based malware

detectors

Add irrelevant API calls Gradient-based

GRAMS

Verwer et al. (2020)

2020 WB FS Static API call list based malware

detectors

Add irrelevant API calls Gradient-based

ATMPA Liu et al. (2019) 2019 WB FS Static Visualization-based malware

detectors

Add adversarial noise to the

malware image

FGSM, C&W

COPYCAT

Khormali et al. (2019)

2019 WB FS Static Visualization-based malware

detectors

Append adversarial noise

generated

FGSM, PGD, C&W, MIM,

DeepFool

AMAO Park et al. (2019) 2019 WB FS Static Visualization-based malware

detectors

Insert the semantic NOPs FGSM, C&W

Li et al. (2020a) 2020a WB FS Static Opcode-based malware detectors Opcode instruction substitution Interpretation model SHAP

AMB

Kolosnjaji et al. (2018)

2018 WB PS Static MalConv Append adversarial bytes Gradient-based

Demetrio et al.

Demetrio et al. (2019)

2019 WB PS Static MalConv Modify specific regions in the PE

header

Gradient-based

RAMEn

Demetrio et al. (2020b)

2020 WB PS Static MalConv, Byte-based DNN

Model Coull and Gardner (2019)

DOS Header Extension, Content

Shifting

Gradient-based

Lucas et al. (2021) 2021 WB PS Static MalConv,

AvastNet Kr ̌cál et al. (2018)

Binary diversification techniques Gradient-based

MalGAN Hu and

Tan (2017b)

2017 BB w/o prob. FS Static API call list based malware

detectors

Add irrelevant API calls GAN

Improved MalGAN

Kawai et al. (2019)

2019 BB w/o prob. FS Static API call list based malware

detectors

Add irrelevant API calls GAN

EvnAttack

Chen et al. (2017)

2017 BB w prob. FS Static API call list based malware

detectors

Add or Remove API calls Greedy Algorithm

Hu and Tan (2017a) 2017 BB w/o prob. FS Dynamic API call sequence based malware

detectors

Insert irrelevant API calls Generative Model

GADGET

Rosenberg et al. (2018)

2018 BB FS Dynamic API call sequence based malware

detectors

Insert irrelevant API calls with

IAT Hooking

Transferability, Heuristics

ELE Fadadu et al. (2019) 2019 BB w prob. FS Dynamic API call sequence based malware

detectors

Insert API calls with IAT Hooking Greedy Algorithm

(continued on next page)

1
6

X
.
 Lin

g
,
 L.

 W
u

,
 J.
 Z

h
a

n
g
 et

 a
l.

C
o

m
p

u
ters

 &
 Secu

rity
 1

2
8
 (2

0
2

3
)
 10

313
4

Table 2 (continued)

Attack Names Year Adversary’s

Knowledge

Adversary’s

Space

PE Malware Detection Attack Methods Preservation

Category Detection Name Transformation Strategy Format Executability

(with empirical

verification)

Maliciousness (with

empirical verification)

BADGER

Rosenberg et al. (2020b)

2020 BB FS Dynamic API call sequence based malware

detectors

Insert API calls with IAT Hooking Evolutionary Algorithm

Rosenberg et al. (2020a) 2020 BB w/ prob. FS Static EMBER Predefined modifiable features Transferability, Explainable ML

SRL Zhang et al. (2020a) 2020 BB w/o prob. FS Static CFG-based malware detectors Inject semantic NOPs into CFG

blocks

Reinforcement Learning

gym-malware Anderson

et al. (2018, 2017)

2017 BB w/o prob. PS Static – format-preserving modifications Reinforcement Learning

gym-plus

Wu et al. (2018)

2018 BB w/o prob. PS Static – format-preserving modifications Reinforcement Learning

gym-malware-mini

Chen et al. (2020a)

2020 BB w/o prob. PS Static – format-preserving modifications Reinforcement Learning

DQEAF Fang et al. (2019) 2019 BB w/o prob. PS Static – format-preserving modifications Reinforcement Learning

RLAttackNet

Fang et al. (2020)

2020 BB w/o prob. PS Static – format-preserving modifications Reinforcement Learning

AMG-VAC

Ebrahimi et al. (2021)

2021 BB w/o prob. PS Static – format-preserving modifications Reinforcement Learning

AIMED-RL Labaca-

Castro et al. (2021a)

2021a BB w/o prob. PS Static – format-preserving modifications Reinforcement Learning

AMG-IRL Li and Li (2021) 2021 BB w/o prob. PS Static – format-preserving modifications Reinforcement Learning

ARMED

Castro et al. (2019b)

2019 BB w/ prob. PS Static – format-preserving modifications Randomization

Dropper

Ceschin et al. (2019)

2019 BB w/o prob. PS Static – Append strings from goodware

& Packing

Randomization

Chen et al. (2019) 2019 BB w/o prob. PS Static MalConv Append bytes from benign PE

files

Experience-based Randomization

Song et al. (2020) 2020 BB w/o prob. PS Static – format-preserving (macro &

micro) modifications

Weighted Randomization

AIMED

Castro et al. (2019a)

2019 BB w/ prob. PS Static – format-preserving modifications Genetic Programming

MDEA Wang and

Miikkulainen (2020)

2020 BB w/ prob. PS Static MalConv format-preserving modifications Genetic Algorithm

GAMMA

Demetrio et al. (2020a)

2020 BB w/ prob. PS Static – Inject and pad sections from

benign PE files

Genetic Algorithm

GAPGAN

Yuan et al. (2020)

2020 BB w/o prob. PS Static MalConv Append bytes to the end GAN

MalFox

Zhong et al. (2020)

2020 BB w/o prob. PS Static – Obfuscation-like techniques Convolutional-GAN

Targeted occlusion attack

Fleshman et al. (2018)

2018 BB w/ prob. PS Static – Occlusion of important bytes Binary Search

Lucas et al. (2021) 2021 BB w/ prob. PS Static MalConv,

AvastNet Kr ̌cál et al. (2018)

Binary diversification techniques Hill-climbing algorithm

17

X. Ling, L. Wu, J. Zhang et al. Computers & Security 128 (2023) 103134

r

m

F

d

A

T

t

d

g

s

C

f

r

m

i

e

i

d

p

5

c

t

f

b

o

s

n

n

t

t

d

S

s

i

d

6

t

v

I

t

v

d

6

6

a

b

g

s

C

m

p

g

m

t

U

P

p

c

6

t

i

p

b

(

w

M

n

i

t

l

o

t

p

t

i

i

w

s

w

m

f

t

d

t

p

S

l

c

c

c

c

t

s

f

t

h

e

e-train a corresponding ML/DL model based on the adversarial PE

alware/features with/without the original PE malware/features.

or instance, Hu and Tan re-train a random-forest-based malware

etector based on the original API calls as well as the adversarial

PI calls generated by the adversarial attack of MalGAN (Hu and

an, 2017b). Anderson et al. (2018) first exploit the gym-malware

o generate adversarial PE malware, and then re-train the malware

etection model of EMBER based on the original PE files and the

enerated adversarial PE malware. Differently, in addition to adver-

arial training with adversarial API calls generated by EvnAttack,

hen et al. (2017) also present a new secure-learning framework

or PE malware detection, namely SecDefender, which adds a secu-

ity regularization term by considering the evasion cost of feature

anipulations by attackers.

To sum up, for those adversarial defenses based on adversar-

al training, it is generally observed that, 1) adversarial training is

xperimentally demonstrated to mitigate one or several adversar-

al attacks to some extent; 2) adversarial training inevitably intro-

uces significant additional costs in generating adversarial exam-

les during the training process.

.2. Other defense methods

As the first place in the defender challenge of the Mi-

rosoft’s 2020 Machine Learning Security Evasion Competi-

ion (Microsoft Azure, 2021), Quiring et al. present a combinatorial

ramework of adversarial defenses – PEberus (Quiring et al., 2020)

ased on the following three defense methods as follows.

1. A PE file is passed into the semantic gap detectors, which are

used to check whether the PE file is maliciously challenged

based on three simple heuristics, i.e. , slack space, overlay, and

duplicate. For instance, a considerably high ratio of the overlay

to the overall size usually indicates the PE file might have ap-

pended bytes to the overlay.

2. If the PE file is not detected by the semantic gap detectors,

PEberus employs the ensemble of existing malware detectors

(e.g. , EMBER Anderson and Roth (2018) , the monotonic skip-

gram model (Íncer Romeo et al., 2018), and the signature-based

model (VirusTotal, 2020)) and use the max voting for predic-

tions.

3. PEberus also employs a stateful nearest-neighbor detec-

tor (Chen et al., 2020b) which continuously checks if the PE file

is similar to any of the previously detected malware in the his-

tory buffer.

In short, with PEberus, a PE file is predicted as malicious if any

f the above three defense methods predicts it as malicious.

Lucas et al. (2021) attempt to mitigate their proposed adver-

arial attacks by exploiting two defensive mechanisms, i.e. , binary

ormalization and instruction masking. For the defense of binary

ormalization, it applies the transformation of in-place randomiza-

ion iteratively into the PE file to reduce its lexicographic represen-

ation, so that its potential adversarial manipulations can be un-

one before inputting it into the downstream PE malware detector.

imilarly, the instruction masking defense first selects a random

ubset of the bytes that pertain to instructions and then masks

t with zeros before inputting the PE file into the PE malware

etector.

. Discussions

The previous sections of § 4 and § 5 enable interested readers

o have a better and faster understanding with regard to the ad-

ersarial attacks and defenses for Windows PE malware detection.

n the following subsections, we first present the other related at-

acks against PE malware detection beyond the aforementioned ad-
18
ersarial attacks in § 6.1 and then shed some light on research

irections as well as opportunities for future work in § 6.2 .

.1. Beyond adversarial attacks

.1.1. Universal adversarial perturbation

Universal Adversarial Perturbation (UAP) is one special type of

dversarial attack in which an identical single perturbation can

e applied over a large set of inputs for misclassifying the tar-

et model in the testing phase. In order to generate the problem-

pace UAP against PE malware classifiers in the wild, Labaca-

astro et al. (2021b) first prepare a set of available transfor-

ations (e.g. , adding sections to the PE file, renaming sections,

ack/unpacking, etc.) for Windows PE files, and then perform a

reedy search approach to identify a short sequence of transfor-

ations as the UAP for the PE malware classifier. In particular, if

he identified short sequence of transformations representing the

AP is applied to any PE malware, then the resulting adversarial

E malware can evade the target PE malware classifier with high

robability while preserving the format, executability, and mali-

iousness.

.1.2. Training-time poisoning attacks

Different from the adversarial attacks that are performed in the

esting phase, the poisoning attacks aim to manipulate the train-

ng phase, such that the resulting poisoned model f b has the same

rediction on a clean set of inputs as the cleanly trained model f c
ut has an adversarially-chosen prediction on the poisoned input

 i.e. , the input associated a specific backdoor trigger).

Aiming at misclassifying a specific family of malware as good-

are, Sasaki et al. (2019) propose the first poisoning attack against

L-based malware detectors. They assume the strictest attack sce-

ario that the adversary not only has full knowledge of the train-

ng dataset and the learning algorithm, but also can manipulate the

raining samples (i.e. , malware) in the feature space as well as their

abels. In particular, the poisoning attack framework first selects

ne specific malware family, and then utilizes the same optimiza-

ion algorithm like Muñoz-González et al. (2017) to generate the

oisoning samples in the feature-space, which are finally adopted

o train the poisoned model.

However, poisoning one entire family of malware is much eas-

er to be detected if the defender checks all malware families

ndividually. In contrast, poisoning one specific instance of mal-

are is a more challenging problem, by which any malware as-

ociated with a backdoor trigger would be misclassified as good-

are, regardless of their malware families. In addition, it is al-

ost impossible to control and manipulate the labeling process

or the poisoning data samples for the adversary, since most of

he training samples normally are labeled with multiple indepen-

ent anti-virus engines by security companies and further used

o train the malware detection models. Therefore, considering the

racticality of the attack scenario in the wild, both following

everi et al. (2021) and Shapira et al. (2020) belong to the clean-

abel poisoning attack Shafahi et al. (2018) , in which the adversary

an control and manipulate the poison instance itself, but cannot

ontrol the labeling of the poison instance.

In Severi et al. (2021) , targeting the feature-based ML malware

lassifier, Severi et al. consider the scenario where the adversary

an know and manipulate the feature-space of software to build

he poisoned goodware (i.e. , goodware with the backdoor trigger),

ome of which can be obtained by security companies to train the

eature-based ML malware classifier. To be specific, the backdoor

rigger is created by presenting a greedy algorithm to select co-

erent combinations of relevant features and values based on the

xplainable machine learning technique (i.e. , SHAP Lundberg and

X. Ling, L. Wu, J. Zhang et al. Computers & Security 128 (2023) 103134

L

s

r

f

a

a

n

i

s

m

b

s

t

b

m

6

t

a

i

i

p

t

e

i

s

l

p

9

s

6

6

o

a

d

c

o

t

s

m

a

s

m

m

s

s

t

n

i

m

e

t

t

6

a

r

b

a

I

t

t

o

g

w

t

a

a

i

i

i

i

s

m

p

e

c

g

a

t

t

v

n

y

u

a

a

6

W

b

t

m

o

g

p

Z

B

a

e

a

f

p

o

a

b

t

i

m

7

o

t

b

i

o

e

s

t

a

p

ee (2017)). Experimental results indicate that the case of 1% poi-

on rate and 17 manipulated features results in an attack success

ate of about 20%.

Shapira et al. (2020) argue that the attack assumption of

eature-space manipulations in Severi et al. (2021) is unrealistic

nd unreasonable for real-world malware classifiers. In pursuit of

 poisoning attack in a problem space, Shapira et al. propose a

ovel instance poisoning attack by first selecting the goodware that

s most similar to the target malware instance and then adding

ections to the goodware for adversarially training the poisoned

odel. Actually, the manipulation of adding sections acts as the

ackdoor trigger, which can remain the functionality of the as-

ociated goodware as well as the malware instance. During the

esting phase, the target malware instance associated with the

ackdoor trigger will be misclassified as benign by the poisoned

odel.

.1.3. Model steal attacks

In order to approximate (i.e. , steal) a remote deployed detec-

ion model f b of PE malware under a strictly black-box setting, Ali

nd Eshete Ali and Eshete (2020) propose a best-effort adversar-

al approximation method, which mainly relies on limited train-

ng samples and publicly accessible pre-trained models. The pro-

osed best-effort adversarial approximation method leverages fea-

ure representation mapping (i.e. , transforming the raw bytes of

ach PE to an image representation) and cross-domain transferabil-

ty (i.e. , taking advantage of pre-trained models from image clas-

ification) to approximate the PE malware detection model f b by

ocally training a substitute PE malware detection model f s . Ex-

erimental results show that the approximated model f s is nearly

0% similar to the black-box model f b in predicting the same input

amples.

.2. Future directions and opportunities

.2.1. Strong demands for robust PE malware detection

As described in § 2.2 and § 5 , although there are a large number

f detection methods for PE malware, there are only very limited

dversarial defense methods for building more robust PE malware

etection models against adversarial attacks. In general, almost all

urrent adversarial defense methods are empirical defenses based

n various heuristics (e.g. , adversarial training, input transforma-

ion, etc.), which are usually only effective for one or a few adver-

arial attack methods, indicating these empirical defenses are nor-

ally attack-specific. On the one hand, with the massive existence

nd continuous evolution of PE malware and corresponding adver-

arial malware, we argue that the demand for empirical defense

ethods against them is also likely to rise accordingly to build

ore robust PE malware detection models. On the other hand, the

ubstantial work of robustness certification applied in image clas-

ification tasks suggests a strong demand for PE malware detec-

ion models with theoretically guaranteed robustness, as there is

o work studying the certified defenses against various adversar-

al attacks until now. We argue that certifying the robustness of

alware detection models not only helps users comprehensively

valuate their effectiveness under any attack, but also increases the

ransparency of their pricing in cloud services (e.g. , malware detec-

ion as a service).

.2.2. Practical and efficient adversarial attacks against commercial

nti-viruses in the wild

As introduced and summarized in § 4 and Table 2 , the cur-

ent adversarial attack methods against PE malware detection have

een devoted to developing problem-space black-box adversarial

ttacks, which usually take a similar and typical attack procedure.

n general, the attack procedure first defines a set of available
19
ransformations (e.g. , inject adversarial payload, insert the seman-

ic NOP s, etc.) in the problem-space, and then employs a variety

f search strategies (e.g. , gradient-based, reinforcement learning,

enetic algorithm, etc.) to choose a sequence of transformations

hich can be applied to the original PE malware for generating

he adversarial PE malware. Based on the above observation, we

rgue there is still much room for improving both the effectiveness

nd efficiency of adversarial attacks against PE malware detection

n two aspects: i) devising and defining more practical and stealth-

er transformations for PE malware. For example, instead of simply

nserting the NOP s in the blocks of CFGs (Zhang et al., 2020a) that

s easily noticed and removed by defenders, the transformation of

plitting one block of CFGs into multiple iteratively called blocks is

uch stealthier to be noticed and removed. ii) designing and im-

lementing more efficient search strategies to accelerate the gen-

ration of adversarial PE malware. We argue that it is quite time-

onsuming for both RL and genetic algorithm based search strate-

ies.

In addition, it is clearly observed that most existing adversarial

ttacks target PE malware detection based on static analysis rather

han dynamic analysis, which is particularly unknown for both at-

ackers and defenders. However, the mainstream commercial anti-

irus software/service used by end users of laptops and servers

ormally employs a hybrid defense solution with both static anal-

sis and dynamic analysis. Therefore, it is extremely important and

rgently demanded to devise and implement practical and efficient

dversarial attacks against PE malware detection based on dynamic

nalysis and commercial anti-viruses.

.2.3. Lack of benchmark platforms for research

As the continuous emergence of adversarial attacks against

indows PE malware detection has led to the constant arms race

etween adversarial attacks and defense methods, it is challenging

o quantitatively understand the strengths and limitations of these

ethods due to incomplete and biased evaluation. In fact, in terms

f other research fields like adversarial attacks in images, texts, and

raphs, there are a large number of corresponding toolboxes and

latforms (Li et al., 2020b; Ling et al., 2019; Papernot et al., 2016;

eng et al., 2020) that have been implemented and open-sourced.

ased on these toolboxes and platforms, subsequent practitioners

nd researchers can not only exploit them to evaluate the actual

ffectiveness of previously proposed methods, but also take them

s a cornerstone to implement their own proposed attacks and de-

enses, thereby reducing the time consumption for repetitive im-

lementations. Therefore, in order to further advance the research

n adversarial attacks against Windows PE malware detection, we

rgue that it is significantly important to design and implement a

enchmark platform with a set of benchmark datasets, representa-

ive PE malware detection to be targeted, state-of-the-art adversar-

al attack & defense methods, performance metrics, and environ-

ents for a comprehensive and fair evaluation.

. Conclusion

In this paper, we conduct a comprehensive review on the state-

f-the-art adversarial attacks against Windows PE malware de-

ection as well as the counterpart adversarial defenses. To the

est of our knowledge, this is the first work that not only man-

fests the unique challenges of adversarial attacks in the context

f Windows PE malware in the wild, but also systematically cat-

gorizes the extensive work from different viewpoints in this re-

earch field. Specifically, by comparing the inherent differences be-

ween PE malware and images that have been explored originally

nd traditionally, we present three unique challenges (i.e. , format-

reserving, executability-preserving, and maliciousness-preserving)

X. Ling, L. Wu, J. Zhang et al. Computers & Security 128 (2023) 103134

i

t

r

f

s

c

y

t

s

a

a

m

t

fi

D

c

i

D

A

P

N

u

C

Y

j

N

R

A

A

A

A

A

A

A

A

A

A

A

A

B

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

D

D

D

D

D

E

F

F

F

F

n maintaining the semantics of adversarial PE malware for prac-

ical and realistic adversarial attacks. Besides, we review recent

esearch efforts in both adversarial attacks and defenses, and

urther develop reasonable taxonomy schemes to organize and

ummarize the existing literature, aiming at making them more

oncise and understandable for interested readers. Moreover, be-

ond the aforementioned adversarial attacks, we discuss other

ypes of attacks against Windows PE malware detection and shed

ome light on future directions. Hopefully, this paper can serve

s a useful guideline and give related researchers/practitioners

 comprehensive and systematical understanding of the funda-

ental issues of adversarial attacks against PE malware detec-

ion, thereby becoming a starting point to advance this research

eld.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

ata availability

No data was used for the research described in the article.

cknowledgement

This project is supported by the Strategic Priority Research

rogram of the Chinese Academy of Sciences under Grant

o.XDA0320 0 0 0, the National Natural Science Foundation of China

nder No.62202457 and No.U1936215, and the project funded by

hina Postdoctoral Science Foundation under No.2022M713253.

aguan Qian is also supported by the Key Program of Zhe-

iang Provincial Natural Science Foundation of China under

o.LZ22F020 0 07.

eferences

bdelsalam, M., Krishnan, R., Huang, Y., Sandhu, R., 2018. Malware detection in
cloud infrastructures using convolutional neural networks. In: International

Conference on Cloud Computing. IEEE, San Francisco, CA, USA, pp. 162–169 .

ghakhani, H., Gritti, F., Mecca, F., Lindorfer, M., Ortolani, S., Balzarotti, D., Vigna, G.,
Kruegel, C., 2020. When malware is packin’heat; limits of machine learning clas-

sifiers based on static analysis features. In: Network and Distributed System Se-
curity Symposium. The Internet Society, San Diego, California, USA, pp. 1–20 .

khtar, N., Mian, A., 2018. Threat of adversarial attacks on deep learning in com-
puter vision: a survey. IEEE Access 6, 14410–14430 .

l-Dujaili, A., Huang, A., Hemberg, E., OReilly, U.-M., 2018. Adversarial deep learning

for robust detection of binary encoded malware. In: IEEE Security and Privacy
Workshops. IEEE, San Francisco, CA, USA, pp. 76–82 .

li, A., Eshete, B., 2020. Best-effort adversarial approximation of black-box malware
classifiers. In: EAI International Conference on Security and Privacy in Commu-

nication Networks. Springer, Washington DC, USA, pp. 318–338 .
lshemali, B., Kalita, J., 2020. Improving the reliability of deep neural networks in

nlp: a review. Knowl Based Syst 191, 105210 .

ltman, N.S., 1992. An introduction to kernel and nearest-neighbor nonparametric
regression. Am Stat 46 (3), 175–185 .

nderson, H. S., Kharkar, A., Filar, B., Evans, D., Roth, P., 2018. Learning to evade
static PE machine learning malware models via reinforcement learning. ArXiv

preprint arXiv:1801.08917.
nderson, H.S., Kharkar, A., Filar, B., Roth, P., 2017. Evading machine learning mal-

ware detection. In: Black Hat USA. blackhat.com, Las Vegas, NV, USA, pp. 1–6 .

nderson, H. S., Roth, P., 2018. EMBER: an open dataset for training static PE mal-
ware machine learning models. ArXiv preprint arXiv:1804.04637.

V-TEST Institute, 2020. Security report 2019/2020. https://www.av-test.org/
fileadmin/pdf/security _ report/AV-TEST _ Security _ Report _ 2019-2020.pdf . Online

(last accessed January 15, 2020).
vira, Inc., 2020. Malware Threat Report: Q4 and 2020 Malware Threat Re-

port. https://www.avira.com/en/blog/q4- and- 2020- malware- threat- report . On-
line (last accessed January 17, 2021).

ailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario, J., 2007. Au-

tomated classification and analysis of internet malware. In: International Work-
shop on Recent Advances in Intrusion Detection. Springer, Gold Goast, Australia,

pp. 178–197 .
arlini, N., Wagner, D., 2017. Towards evaluating the robustness of neural networks.

In: IEEE Symposium on Security and Privacy. IEEE, San Jose, CA, USA, pp. 39–57 .
20
astro, R.L., Schmitt, C., Dreo, G., 2019. AIMED: Evolving malware with genetic pro-
gramming to evade detection. In: International Conference on Trust, Security

and Privacy in Computing and Communications / International Conference on
Big Data Science and Engineering. IEEE, Rotorua, New Zealand, pp. 240–247 .

astro, R.L., Schmitt, C., Rodosek, G.D., 2019. ARMED: How automatic malware mod-
ifications can evade static detection? In: International Conference on Informa-

tion Management. IEEE, Cambridge, United Kingdom, pp. 20–27 .
eschin, F., Botacin, M., Gomes, H.M., Oliveira, L.S., Grégio, A., 2019. Shallow secu-

rity: on the creation of adversarial variants to evade machine learning-based

malware detectors. In: Reversing and Offensive-Oriented Trends Symposium.
ACM, Vienna, Austria, pp. 1–9 .

eschin, F., Gomes, H. M., Botacin, M., Bifet, A., Pfahringer, B., Oliveira, L. S., Grégio,
A., 2020. Machine learning (in) security: A stream of problems. ArXiv preprint

arXiv:2010.16045.
hakraborty, A., Alam, M., Dey, V., Chattopadhyay, A., Mukhopadhyay, D., 2018. Ad-

versarial attacks and defenses: a survey. arXiv preprint arXiv:1810.0 0 069 .

hen, B., Ren, Z., Yu, C., Hussain, I., Liu, J., 2019. Adversarial examples for CNN-based
malware detectors. IEEE Access 7, 54360–54371 .

hen, J., Jiang, J., Li, R., Dou, Y., 2020. Generating adversarial examples for static PE
malware detector based on deep reinforcement learning. J. Phys. Conf. Ser. 1575

(1), 012011 .
hen, K., Wang, P., Lee, Y., Wang, X., Zhang, N., Huang, H., Zou, W., Liu, P., 2015.

Finding unknown malice in 10 seconds: mass vetting for new threats at the

google-play scale. In: USENIX Security Symposium. USENIX Association, Wash-
ington, D.C., USA, pp. 659–674 .

hen, L., Ye, Y., Bourlai, T., 2017. Adversarial machine learning in malware detection:
Arms race between evasion attack and defense. In: European Intelligence and

Security Informatics Conference. IEEE, Athens, Greece, pp. 99–106 .
hen, S., Carlini, N., Wagner, D., 2020. Stateful detection of black-box adversarial

attacks. In: ACM Workshop on Security and Privacy on Artificial Intelligence.

ACM, Taipei, Taiwan, China, pp. 30–39 .
heng, B., Ming, J., Fu, J., Peng, G., Chen, T., Zhang, X., Marion, J.-Y., 2018. Towards

paving the way for large-scale windows malware analysis: Generic binary un-
packing with orders-of-magnitude performance boost. In: ACM SIGSAC Confer-

ence on Computer and Communications Security. ACM, Toronto, ON, Canada,
pp. 395–411 .

ho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,

Bengio, Y., 2014. Learning phrase representations using rnn encoder–decoder for
statistical machine translation. In: Empirical Methods in Natural Language Pro-

cessing. ACL, Doha, Qatar, pp. 1724–1734 .
ohen, W.W., 1996. Learning trees and rules with set-valued features. In: AAAI/IAAI.

AAAI Press, Portland, Oregon, USA, pp. 709–716 .
ollobert, R., Bengio, S., 2004. Links between perceptrons, MLPs and SVMs. In: Inter-

national Conference on Machine Learning. ACM, Banff, Alberta, Canada, pp. 1–8 .

ortes, C., Jackel, L.D., Chiang, W.-P., et al., 1995. Limits on learning machine accu-
racy imposed by data quality. In: International Conference on Knowledge Dis-

covery and Data Mining. AAAI Press, Montreal, Canada, pp. 57–62 .
ortes, C., Vapnik, V., 1995. Support-vector networks. Mach Learn 20 (3), 273–297 .

orvus Forensics, 2021. Virusshare.com – because sharing is caring. https://
virusshare.com/ . Online (last accessed August 25, 2021).

oull, S.E., Gardner, C., 2019. Activation analysis of a byte-based deep neural net-
work for malware classification. In: IEEE Security and Privacy Workshops. IEEE,

San Francisco, CA, UAS, pp. 21–27 .

uckoo Team, 2020. Cuckoo Sandbox. https://cuckoosandbox.org . Online (last ac-
cessed September 13, 2020).

ang, D.-C., Lehre, P.K., 2016. Self-adaptation of mutation rates in non-elitist pop-
ulations. In: International Conference on Parallel Problem Solving from Nature.

Springer, Edinburgh, UK, pp. 803–813 .
emetrio, L., Biggio, B., Lagorio, G., Roli, F., Armando, A., 2019. Explaining vul-

nerabilities of deep learning to adversarial malware binaries. ArXiv preprint

arXiv:1901.03583.
emetrio, L., Biggio, B., Lagorio, G., Roli, F., Armando, A., 2020a. Functionality-

preserving black-box optimization of adversarial windows malware. ArXiv
preprint arXiv:2003.13526.

emetrio, L., Coull, S. E., Biggio, B., Lagorio, G., Armando, A., Roli, F., 2020b. Ad-
versarial EXEmples: A survey and experimental evaluation of practical at-

tacks on machine learning for windows malware detection. ArXiv preprint

arXiv:2008.07125.
eng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L., 2009. ImageNet:

A large-scale hierarchical image database. In: IEEE Conference on Com-
puter Vision and Pattern Recognition. IEEE, Miami, Florida, USA, pp. 248–

255 .
brahimi, M., Pacheco, J., Li, W., Hu, J.L., Chen, H., 2021. Binary black-box attacks

against static malware detectors with reinforcement learning in discrete action

spaces. In: IEEE Security and Privacy Workshops. IEEE, Virtual Event, pp. 85–91 .
adadu, F., Handa, A., Kumar, N., Shukla, S.K., 2019. Evading API call sequence based

malware classifiers. In: International Conference on Information and Communi-
cations Security. Springer, Beijing, China, pp. 18–33 .

ang, Y., Zeng, Y., Li, B., Liu, L., Zhang, L., 2020. Deepdetectnet vs RLAttacknet: an
adversarial method to improve deep learning-based static malware detection

model. PLoS ONE 15 (4), e0231626 .

ang, Z., Wang, J., Li, B., Wu, S., Zhou, Y., Huang, H., 2019. Evading anti–
malware engines with deep reinforcement learning. IEEE Access 7, 48867–

48879 .
leshman, W., Raff, E., Zak, R., McLean, M., Nicholas, C., 2018. Static malware detec-

tion & subterfuge: Quantifying the robustness of machine learning and current

https://doi.org/10.13039/501100002858
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0001
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0002
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0003
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0004
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0005
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0006
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0007
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0008
https://www.av-test.org/fileadmin/pdf/security_report/AV-TEST_Security_Report_2019-2020.pdf
https://www.avira.com/en/blog/q4-and-2020-malware-threat-report
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0009
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0010
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0011
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0012
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0013
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0014
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0015
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0016
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0017
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0018
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0019
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0020
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0021
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0022
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0023
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0024
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0025
https://virusshare.com/
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0026
https://cuckoosandbox.org
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0027
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0028
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0029
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0030
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0031
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0032
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0033

X. Ling, L. Wu, J. Zhang et al. Computers & Security 128 (2023) 103134

F

G

G

H

H

H

H

H

I

I

Í

I

J

K

K

K

K

K

K

K

K

K

K

K

K

K

K

K

K

K

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

M

M

M

M

M

M

M

N

N

P

anti-virus. In: International Conference on Malicious and Unwanted Software.
IEEE, Nantucket, MA, USA, pp. 1–10 .

ranklin, J., 2005. The elements of statistical learning: data mining, inference and
prediction. The Mathematical Intelligencer 27 (2), 83–85 .

ibert, D., Mateu, C., Planes, J., Vicens, R., 2018. Classification of malware by
using structural entropy on convolutional neural networks. In: AAAI Con-

ference on Artificial Intelligence. AAAI Press, New Orleans, Louisiana, USA,
pp. 7759–7764 .

oodfellow, I.J., Shlens, J., Szegedy, C., 2015. Explaining and harnessing adversar-

ial examples. In: International Conference on Learning Representations. Open-
Review.net, San Diego, CA, USA, pp. 1–11 .

assen, M., Chan, P.K., 2017. Scalable function call graph-based malware classifica-
tion. In: ACM on Conference on Data and Application Security and Privacy. ACM,

Scottsdale, AZ, USA, pp. 239–248 .
o, T.K., 1995. Random decision forests. In: International Conference on Document

Analysis and Recognition. IEEE, Montreal, Canada, pp. 278–282 .

ochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput 9 (8),
1735–1780 .

u, W., Tan, Y., 2017a. Black-box attacks against RNN based malware detection al-
gorithms. ArXiv preprint arXiv:1705.08131.

u, W., Tan, Y., 2017b. Generating adversarial malware examples for black-box at-
tacks based on GAN. ArXiv preprint arXiv:1702.05983.

dika, N., Mathur, A.P., 2007. A survey of malware detection techniques. Purdue Uni-

versity 48 (2), 32–46 .
nc., Y., 2020. Yelp open dataset: An all-purpose dataset for learning. https://www.

yelp.com/dataset . Online (last accessed October 22, 2020).
ncer Romeo, Í., Theodorides, M., Afroz, S., Wagner, D., 2018. Adversarially robust

malware detection using monotonic classification. In: International Workshop
on Security and Privacy Analytics. ACM, Tempe, AZ, USA, pp. 54–63 .

slam, R., Tian, R., Batten, L., Versteeg, S., 2010. Classification of malware based on

string and function feature selection. In: Cybercrime and Trustworthy Comput-
ing Workshop. IEEE, Ballarat, Australia, pp. 9–17 .

iang, H., Turki, T., Wang, J.T., 2018. Dlgraph: Malware detection using deep learning
and graph embedding. In: International Conference on Machine Learning and

Applications. IEEE, Orlando, FL, USA, pp. 1029–1033 .
antchelian, A., Tschantz, M.C., Afroz, S., Miller, B., Shankar, V., Bachwani, R.,

Joseph, A.D., Tygar, J.D., 2015. Better malware ground truth: Techniques for

weighting anti-virus vendor labels. In: ACM Workshop on Artificial Intelligence
and Security. ACM, Denver, Colorado, USA, pp. 45–56 .

apoor, A., Dhavale, S., 2016. Control flow graph based multiclass malware detection
using bi-normal separation. Def Sci J 66 (2), 138–145 .

aspersky Lab, 2020a. New malicious files discovered daily grow by 5.7% to
380,0 0 0 in 2021. https://www.kaspersky.com/about/press-releases/2021 _ new-

malicious- files- discovered-daily-grow-by-57-to-380 0 0 0-in-2021 . Online (last

accessed September 14, 2022).
aspersky Lab, 2020b. The number of new malicious files detected every

day increases by 5.2% to 360,0 0 0 in 2020. https://www.kaspersky.com/
about/press-releases/2020 _ the-number-of-new-malicious-files-detected-every-

day-increases-by-52-to-360 0 0 0-in-2020 . Online (last accessed October 1,
2021).

awai, M., Ota, K., Dong, M., 2019. Improved MalGAN: avoiding malware detector by
leaning cleanware features. In: International Conference on Artificial Intelligence

in Information and Communication. IEEE, Okinawa, Japan, pp. 40–45 .

e, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.-Y., 2017. Light-
GBM: a highly efficient gradient boosting decision tree. In: Advances in Neural

Information Processing Systems. Curran Associates, Inc., Long Beach, CA, USA,
pp. 3146–3154 .

hormali, A., Abusnaina, A., Chen, S., Nyang, D., Mohaisen, A., 2019. COPYCAT:
practical adversarial attacks on visualization-based malware detection. ArXiv

preprint arXiv:1909.09735.

im, H.-J., 2017. Image-based malware classification using convolutional neural net-
work. In: Advances in Computer Science and Ubiquitous Computing. Springer,

Taichung, Taiwan, China, pp. 1352–1357 .
ipf, T.N., Welling, M., 2017. Semi-supervised classification with graph convolutional

networks. In: International Conference on Learning Representations. OpenRe-
view.net, Toulon, France, pp. 1–14 .

olosnjaji, B., Demontis, A., Biggio, B., Maiorca, D., Giacinto, G., Eckert, C., Roli, F.,

2018. Adversarial malware binaries: evading deep learning for malware de-
tection in executables. In: European Signal Processing Conference. IEEE, Roma,

Italy, pp. 533–537 .
olter, J.Z., Maloof, M.A., 2006. Learning to detect and classify malicious exe-

cutables in the wild. Journal of Machine Learning Research 7 (12), 2721–
2744 .

r ̌cál, M., Švec, O., Bálek, M., Jašek, O., 2018. Deep convolutional malware classifiers

can learn from raw executables and labels only. In: International Conference
on Learning Representations – Workshop Track. OpenReview.net, Vancouver, BC,

Canada, pp. 1–4 .
reuk, F., Barak, A., Aviv-Reuven, S., Baruch, M., Pinkas, B., Keshet, J., 2018. Deceiving

end-to-end deep learning malware detectors using adversarial examples. ArXiv
preprint arXiv:1802.04528.

rizhevsky, A., 2009. Learning multiple layers of features from tiny images. http:

//www.cs.toronto.edu/ ∼kriz/learning-features-2009-TR.pdf .
rizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with

deep convolutional neural networks. In: Advances in Neural Information Pro-
cessing Systems. Curran Associates, Inc., Lake Tahoe, Nevada, United States,

pp. 1106–1114 .
21
urakin, A., Goodfellow, I., Bengio, S., 2017. Adversarial examples in the physi-
cal world. In: International Conference on Learning Representations. OpenRe-

view.net, Toulon, France, pp. 1–14 .
won, B.J., Mondal, J., Jang, J., Bilge, L., Dumitra ̧s , T., 2015. The dropper effect:

insights into malware distribution with downloader graph analytics. In: ACM

SIGSAC Conference on Computer and Communications Security. ACM, Denver,

Colorado, USA, pp. 1118–1129 .
abaca-Castro, R., Franz, S., Rodosek, G.D., 2021. AIMED-RL: Exploring adversarial

malware examples with reinforcement learning. In: Joint European Conference

on Machine Learning and Knowledge Discovery in Databases. Springer, Bilbao,
Spain, pp. 37–52 .

abaca-Castro, R., Muñoz-González, L., Pendlebury, F., Rodosek, G. D., Pierazzi, F.,
Cavallaro, L., 2021b. Universal adversarial perturbations for malware. ArXiv

preprint arXiv:2102.06747.
an, J., Zhang, R., Yan, Z., Wang, J., Chen, Y., Hou, R., 2022. Adversarial attacks and

defenses in speaker recognition systems: a survey. J. Syst. Archit. 127, 102526 .

eCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning applied to
document recognition. Proc. IEEE 86 (11), 2278–2324 .

i, D., Li, Q., Ye, Y., Xu, S., 2021. Arms race in adversarial malware detection: asurvey.
ACM Computing Surveys (CSUR) 55 (1), 1–35 .

i, X., Li, Q., 2021. An IRL-based malware adversarial generation method to evade
anti-malware engines. Computers & Security 104, 102118 .

i, X., Qiu, K., Qian, C., Zhao, G., 2020. An adversarial machine learning method

based on opcode N-grams feature in malware detection. In: International Con-
ference on Data Science in Cyberspace. IEEE, Hong Kong, China, pp. 380–387 .

i, Y., Jin, W., Xu, H., Tang, J., 2020b. DeepRobust: A pytorch library for adversarial
attacks and defenses. ArXiv preprint arXiv:2005.06149.

ing, X., Ji, S., Zou, J., Wang, J., Wu, C., Li, B., Wang, T., 2019. DEEPSEC: A uniform
platform for security analysis of deep learning model. In: IEEE Symposium on

Security and Privacy. IEEE, San Francisco, USA, pp. 673–690 .

ing, X., Wu, L., Deng, W., Qu, Z., Zhang, J., Zhang, S., Ma, T., Wang, B., Wu, C., Ji, S.,
2022. MalGraph: Hierarchical graph neural networks for robust Windows mal-

ware detection. In: IEEE Conference on Computer Communications. IEEE, Virtual
Event, pp. 1998–2007 .

ing, X., Wu, L., Wang, S., Ma, T., Xu, F., Liu, A.X., Wu, C., Ji, S., 2021. Multilevel
graph matching networks for deep graph similarity learning. IEEE Transactions

on Neural Networks and Learning Systems (TNNLS) .

ing, X., Wu, L., Wang, S., Pan, G., Ma, T., Xu, F., Liu, A.X., Wu, C., Ji, S., 2021. Deep
graph matching and searching for semantic code retrieval. ACM Transactions on

Knowledge Discovery from Data (TKDD) 15 (5) .
iu, X., Lin, Y., Li, H., Zhang, J., 2020. A novel method for malware detection on

ml-based visualization technique. Computers & Security 89, 101682 .
iu, X., Zhang, J., Lin, Y., Li, H., 2019. ATMPA: Attacking machine learning-based mal-

ware visualization detection methods via adversarial examples. In: IEEE/ACM In-

ternational Symposium on Quality of Service. IEEE, Phoenix, AZ, USA, pp. 1–10 .
ong, T., Gao, Q., Xu, L., Zhou, Z., 2022. A survey on adversarial attacks in computer

vision: taxonomy, visualization and future directions. Computers & Security 121,
102847 .

ucas, K., Sharif, M., Bauer, L., Reiter, M.K., Shintre, S., 2021. Malware makeover:
Breaking ml-based static analysis by modifying executable bytes. In: ASIA Con-

ference on Computer and Communications Security. ACM, Hongkong, China,
pp. 744–758 .

undberg, S.M., Lee, S.-I., 2017. A unified approach to interpreting model predictions.

In: Advances in neural information processing systems. Curran Associates, Inc.,
Long Beach, CA, USA, pp. 4765–4774 .

achado, G.R., Silva, E., Goldschmidt, R.R., 2021. Adversarial machine learning in im-
age classification: a survey toward the defenders perspective. ACM Computing

Surveys (CSUR) 55 (1), 1–38 .
icrosoft Azure, 2021. 2020 machine learning security evasion competition. https://

github.com/Azure/2020- machine- learning- security- evasion- competition . Online

(last accessed January 20, 2021).
icrosoft, Inc., 2020. PE format. https://docs.microsoft.com/en-us/windows/win32/

debug/pe-format . Online (last accessed October 22, 2020).
IT-IBM Watson AI Lab, 2019. Robust malware detection challenge. 1st Work-

shop on Adversarial Learning Methods for Machine Learning and Data
Mining in KDD 2019 https://sites.google.com/view/advml/Home/advml-2019/

advml19-challenge . Online (last accessed October 15, 2020).

ohaisen, A., Alrawi, O., Mohaisen, M., 2015. AMAL: high-fidelity, behavior-based
automated malware analysis and classification. Computers & Security 52,

251–266 .
uñoz-González, L., Biggio, B., Demontis, A., Paudice, A., Wongrassamee, V.,

Lupu, E.C., Roli, F., 2017. Towards poisoning of deep learning algorithms with
back-gradient optimization. In: ACM Workshop on Artificial Intelligence and Se-

curity. ACM, Dallas, TX, USA, pp. 27–38 .

urphy, K.P., et al., 2006. Naive bayes classifiers. Technical Report. University of
British Columbia .

ataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B.S., 2011. Malware images: visual-
ization and automatic classification. In: International Symposium on Visualiza-

tion for Cyber Security. ACM, Pittsburgh, PA, USA, pp. 1–7 .
ataraj, L., Yegneswaran, V., Porras, P., Zhang, J., 2011. A comparative assessment of

malware classification using binary texture analysis and dynamic analysis. In:

ACM Workshop on Security and Artificial Intelligence. ACM, Chicago, IL, USA,
pp. 21–30 .

apernot, N., Faghri, F., Carlini, N., Goodfellow, I., Feinman, R., Kurakin, A., Xie, C.,
Sharma, Y., Brown, T., Roy, A., et al., 2016. Technical report on the cleverhans

v2.1.0 adversarial examples library. ArXiv preprint arXiv:1610.00768.

http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0033
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0034
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0035
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0036
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0037
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0038
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0039
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0040
https://www.yelp.com/dataset
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0041
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0042
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0043
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0044
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0045
https://www.kaspersky.com/about/press-releases/2021_new-malicious-files-discovered-daily-grow-by-57-to-380000-in-2021
https://www.kaspersky.com/about/press-releases/2020_the-number-of-new-malicious-files-detected-every-day-increases-by-52-to-360000-in-2020
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0046
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0047
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0048
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0049
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0050
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0051
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0052
http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0053
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0054
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0055
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0056
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0057
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0058
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0059
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0060
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0061
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0062
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0063
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0064
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0065
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0066
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0067
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0068
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0069
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0070
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0071
https://github.com/Azure/2020-machine-learning-security-evasion-competition
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://sites.google.com/view/advml/Home/advml-2019/advml19-challenge
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0072
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0073
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0074
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0075
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0076

X. Ling, L. Wu, J. Zhang et al. Computers & Security 128 (2023) 103134

P

P

P

P
P

P

P

P

Q

Q

Q

Q

R

R

R

R

R

R

R

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

T

U

V

V

V

W

W

W

W

Y

Y

Y

Y

Y

Y

Z

Z

Z

apernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A., 2017. Prac-
tical black-box attacks against machine learning. In: Asia Conference on Com-

puter and Communications Security. ACM, Abu Dhabi, United Arab Emirates,
pp. 506–519 .

ark, D., Khan, H., Yener, B., 2019. Generation & evaluation of adversarial
examples for malware obfuscation. In: International Conference on Ma-

chine Learning and Applications. IEEE, Boca Raton, FL, USA, pp. 1283–
1290 .

ark, D., Yener, B., 2020. A survey on practical adversarial examples for malware

classifiers. In: Reversing and Offensive-oriented Trends Symposium. ACM, Vi-
enna, Austria, pp. 23–35 .

aterson, T., 1983. An inside look at MS-DOS. Byte 8 (6), 230 .
eng, H., Long, F., Ding, C., 2005. Feature selection based on mutual information cri-

teria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pat-
tern Anal Mach Intell 27 (8), 1226–1238 .

ierazzi, F., Pendlebury, F., Cortellazzi, J., Cavallaro, L., 2020. Intriguing properties of

adversarial ml attacks in the problem space. In: IEEE Symposium on Security
and Privacy. IEEE, Virtual Event, pp. 1332–1349 .

ietrek, M., 2020. Inside Windows: An in-depth look into the Win32 portable ex-
ecutable file format. MSDN Magazine: https://docs.microsoft.com/en-us/archive/

msdn- magazine/2002/february/inside- windows- win32- portable- executable- file-
format- in- detail . Online (last accessed October 22, 2020).

oulios, G., Ntantogian, C., Xenakis, C., 2015. ROPInjector: Using return oriented pro-

gramming for polymorphism and antivirus evasion. In: Black Hat USA. black-
hat.com, Las Vegas, NV, USA, pp. 1–11 .

iao, Y., Yang, Y., Ji, L., He, J., 2013. Analyzing malware by abstracting the frequent
itemsets in api call sequences. In: IEEE International Conference on Trust, Secu-

rity and Privacy in Computing and Communications. IEEE, Melbourne, Australia,
pp. 265–270 .

iao, Y., Zhang, W., Tian, Z., Yang, L.T., Liu, Y., Alazab, M., 2022. Adversarial malware

sample generation method based on the prototype of deep learning detector.
Computers & Security 102762 .

uiring, E., Maier, A., Rieck, K., 2019. Misleading authorship attribution of source
code using adversarial learning. In: USENIX Security Symposium. USENIX Asso-

ciation, Santa Clara, CA, USA, pp. 479–496 .
uiring, E., Pirch, L., Reimsbach, M., Arp, D., Rieck, K., 2020. Against all odds: Win-

ning the defense challenge in an evasion competition with diversification. ArXiv

preprint arXiv:2010.09569.
aff, E., Barker, J., Sylvester, J., Brandon, R., Catanzaro, B., Nicholas, C., 2017. Malware

detection by eating a whole EXE. ArXiv preprint arXiv:1710.09435.
aff, E., Nicholas, C., 2020. A survey of machine learning methods and challenges

for windows malware classification. ArXiv preprint arXiv:2006.09271.
ieck, K., Holz, T., Willems, C., Düssel, P., Laskov, P., 2008. Learning and classifi-

cation of malware behavior. In: International Conference on Detection of In-

trusions and Malware, and Vulnerability Assessment. Springer, Paris, France,
pp. 108–125 .

osenberg, I., Meir, S., Berrebi, J., Gordon, I., Sicard, G., David, E.O., 2020. Generating
end-to-end adversarial examples for malware classifiers using explainability. In:

International Joint Conference on Neural Networks. IEEE, Glasgow, United King-
dom, pp. 1–10 .

osenberg, I., Shabtai, A., Elovici, Y., Rokach, L., 2020. Query-efficient black-box at-
tack against sequence-based malware classifiers. In: Annual Computer Security

Applications Conference. ACM, Virtual Event, pp. 611–626 .

osenberg, I., Shabtai, A., Rokach, L., Elovici, Y., 2018. Generic black-box end-to-end
attack against state of the art API call based malware classifiers. In: Interna-

tional Symposium on Research in Attacks, Intrusions, and Defenses. Springer,
Heraklion, Crete, Greece, pp. 490–510 .

yder, B.G., 1979. Constructing the call graph of a program. IEEE Trans. Software
Eng. 5 (3), 216–226 .

antos, I., Brezo, F., Ugarte-Pedrero, X., Bringas, P.G., 2013. Opcode sequences as rep-

resentation of executables for data-mining-based unknown malware detection.
Inf Sci (Ny) 231, 64–82 .

asaki, S., Hidano, S., Uchibayashi, T., Suganuma, T., Hiji, M., Kiyomoto, S., 2019. On
embedding backdoor in malware detectors using machine learning. In: Interna-

tional Conference on Privacy, Security and Trust. IEEE, Fredericton, NB, Canada,
pp. 1–5 .

axe, J., Berlin, K., 2015. Deep neural network based malware detection using two

dimensional binary program features. In: International Conference on Malicious
and Unwanted Software. IEEE, Fajardo, PR, USA, pp. 11–20 .

chultz, M.G., Eskin, E., Zadok, F., Stolfo, S.J., 2001. Data mining methods for detec-
tion of new malicious executables. In: IEEE Symposium on Security and Privacy.

IEEE, Oakland, California, USA, pp. 38–49 .
ebastián, M., Rivera, R., Kotzias, P., Caballero, J., 2016. AVCLASS: a tool for massive

malware labeling. In: International Symposium on Research in Attacks, Intru-

sions, and Defenses. Springer, Paris, France, pp. 230–253 .
ebastián, S., Caballero, J., 2020. AVClASS2: massive malware tag extraction from

AV labels. In: Annual Computer Security Applications Conference. ACM, Virtual
Event, pp. 42–53 .

elvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D., 2017.
Grad-CAM: Visual explanations from deep networks via gradient-based local-

ization. In: International Conference on Computer Vision. IEEE, Venice, Italy,

pp. 618–626 .
erban, A., Poll, E., Visser, J., 2020. Adversarial examples on object recognition:

acomprehensive survey. ACM Computing Surveys (CSUR) 53 (3), 1–38 .
everi, G., Meyer, J., Coull, S., Oprea, A., 2021. Explanation-guided backdoor poi-

soning attacks against malware classifiers. In: USENIX Security Symposium.
22
USENIX Association, Virtual Event, pp. 1487–1504 . (First submitted to arXiv.org
on March 2020 at https://arxiv.org/abs/2003.01031v1 .)

hafahi, A., Huang, W.R., Najibi, M., Suciu, O., Studer, C., Dumitras, T., Goldstein, T.,
2018. Poison frogs! targeted clean-label poisoning attacks on neural networks.

In: Advances in Neural Information Processing Systems. Curran Associates, Inc.,
Montréal, Canada, pp. 6106–6116 .

hafiq, M.Z., Tabish, S.M., Mirza, F., Farooq, M., 2009. PE-Miner: Mining structural
information to detect malicious executables in realtime. In: International Work-

shop on Recent Advances in Intrusion Detection. Springer, Saint-Malo, France,

pp. 121–141 .
hapira, T., Berend, D., Rosenberg, I., Liu, Y., Shabtai, A., Elovici, Y., 2020. Being single

has benefits. Instance poisoning to deceive malware classifiers. ArXiv preprint
arXiv:2010.16323.

Hex-Rays, 2020. IDA Pro. https://www.hex-rays.com/products/ida/ . Online (last ac-
cessed September 13, 2020).

hoair, K., 2020. Dr0p1t-framework. https://github.com/D4Vinci/Dr0p1t-Framework .

Online (last accessed October 25, 2020).
ong, W., Li, X., Afroz, S., Garg, D., Kuznetsov, D., Yin, H., 2020. Automatic genera-

tion of adversarial examples for interpreting malware classifiers. ArXiv preprint
arXiv:20 03.0310 0.

ouppaya, M., Scarfone, K., et al., 2013. Guide to malware incident prevention and
handling for desktops and laptops. NIST Special Publication 800, 83 .

uciu, O., Coull, S.E., Johns, J., 2019. Exploring adversarial examples in malware de-

tection. In: IEEE Security and Privacy Workshops. IEEE, San Francisco, CA, USA,
pp. 8–14 .

un, G., Qian, Q., 2018. Deep learning and visualization for identifying malware fam-
ilies. IEEE Trans Dependable Secure Comput 18, 283–295 .

un, L., Dou, Y., Yang, C., Wang, J., Yu, P. S., He, L., Li, B., 2018. Adversarial attack and
defense on graph data: A survey. ArXiv preprint arXiv:1812.10528.

undararajan, M., Taly, A., Yan, Q., 2017. Axiomatic attribution for deep networks. In:

International Conference on Machine Learning. PMLR, Sydney, NSW, Australia,
pp. 3319–3328 .

utton, R.S., Barto, A.G., 2018. Reinforcement learning: An introduction. MIT Press,
Cambridge, Massachusetts, USA / London, England . Second edition (in progress)

elock, 2020. Telock Version 0.98 for Windows. https://www.softpedia.com/get/
Programming/Packers- Crypters- Protectors/Telock.shtml . Online (last accessed

October 25, 2020).

cci, D., Aniello, L., Baldoni, R., 2019. Survey of machine learning techniques for
malware analysis. Computers & Security 81, 123–147 .

erwer, S., Nadeem, A., Hammerschmidt, C., Bliek, L., Al-Dujaili, A., O’Reilly, U.-M.,
2020. The robust malware detection challenge and greedy random acceler-

ated multi-bit search. In: ACM Workshop on Artificial Intelligence and Security
(AISec). ACM, Virtual Event, pp. 61–70 .

incent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A., Bottou, L., 2010.

Stacked denoising autoencoders: learning useful representations in a deep net-
work with a local denoising criterion. Journal of Machine Learning Research 11

(12), 3371–3408 .
irusTotal, 2020. YARA in a nutshell. https://github.com/virustotal/yara . Online (last

accessed December 15, 2020).
ang, S., Chen, Z., Yu, X., Li, D., Ni, J., Tang, L., Gui, J., Li, Z., Chen, H., Yu, P.S., 2019.

Heterogeneous graph matching networks for unknown malware detection. In:
International Joint Conference on Artificial Intelligence. ijcai.org, Macao, China,

pp. 3762–3770 .

ang, X., Miikkulainen, R., 2020. MDEA: Malware detection with evolutionary ad-
versarial learning. ArXiv preprint arXiv:2002.03331.

itten, I.H., Frank, E., 2002. Data mining: practical machine learning tools and tech-
niques with java implementations. ACM Sigmod Record 31 (1), 76–77 .

u, C., Shi, J., Yang, Y., Li, W., 2018. Enhancing machine learning based malware de-
tection model by reinforcement learning. In: International Conference on Com-

munication and Network Security. ACM, Qingdao, China, pp. 74–78 .

an, J., Yan, G., Jin, D., 2019. Classifying malware represented as control flow

graphs using deep graph convolutional neural network. In: IEEE/IFIP Interna-

tional Conference on Dependable Systems and Networks. IEEE, Portland, OR,
USA, pp. 52–63 .

e, Y., Chen, L., Wang, D., Li, T., Jiang, Q., Zhao, M., 2009. Sbmds: an interpretable
string based malware detection system using svm ensemble with bagging. Jour-

nal in Computer Virology 5 (4), 283–293 .

e, Y., Li, T., Adjeroh, D., Iyengar, S.S., 2017. A survey on malware detection using
data mining techniques. ACM Comput Surv 50 (3), 1–40 .

e, Y., Li, T., Chen, Y., Jiang, Q., 2010. Automatic malware categorization using clus-
ter ensemble. In: ACM SIGKDD Conference on Knowledge Discovery and Data

Mining. ACM, Washington, DC, USA, pp. 95–104 .
tisf, 2021. thezoo a live malware repo. https://github.com/ytisf/thezoo . Online (last

accessed August 25, 2021).

uan, J., Zhou, S., Lin, L., Wang, F., Cui, J., 2020. Black-box adversarial attacks
against deep learning based malware binaries detection with GAN. In: European

Conference on Artificial Intelligence. IOS Press, Santiago de Compostela, Spain,
pp. 2536–2542 .

eidanloo, H.R., Tabatabaei, F., Amoli, P.V., Tajpour, A., 2010. All about malwares (ma-
licious codes). In: Security and Management, pp. 342–348 .

eng, G., Qi, F., Zhou, Q., Zhang, T., Ma, Z., Hou, B., Zang, Y., Liu, Z., Sun, M., 2020.

OpenAttack: an open-source textual adversarial attack toolkit. ArXiv preprint
arXiv:2009.09191.

hang, J., Li, C., 2019. Adversarial examples: opportunities and challenges. IEEE Trans
Neural Netw Learn Syst 31 (7), 2578–2593 .

http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0077
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0078
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0079
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0080
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0081
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0082
https://docs.microsoft.com/en-us/archive/msdn-magazine/2002/february/inside-windows-win32-portable-executable-file-format-in-detail
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0083
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0084
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0085
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0086
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0087
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0088
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0089
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0090
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0091
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0092
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0093
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0094
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0095
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0096
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0097
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0098
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0099
https://arxiv.org/abs/2003.01031v1
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0101
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0102
https://www.hex-rays.com/products/ida/
https://github.com/D4Vinci/Dr0p1t-Framework
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0103
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0104
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0105
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0106
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0107
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0107
https://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/Telock.shtml
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0108
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0109
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0110
https://github.com/virustotal/yara
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0111
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0112
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0113
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0114
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0115
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0116
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0117
https://github.com/ytisf/thezoo
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0118
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0119
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0120

X. Ling, L. Wu, J. Zhang et al. Computers & Security 128 (2023) 103134

Z

Z

Z

Z

Z

Z

d

D
o

H

i
K

f
o

a
f

U

C
s

hang, J., Qin, Z., Yin, H., Ou, L., Hu, Y., 2016. IRMD: malware variant detection us-
ing opcode image recognition. In: International Conference on Parallel and Dis-

tributed Systems. IEEE, Wuhan, China, pp. 1175–1180 .
hang, L., Liu, P., Choi, Y.-H., 2020a. Semantic-preserving reinforcement learning

attack against graph neural networks for malware detection. ArXiv preprint
arXiv:2009.05602.

hang, Z., Qi, P., Wang, W., 2020. Dynamic malware analysis with feature engineer-
ing and feature learning. In: AAAI Conference on Artificial Intelligence. AAAI

Press, New York, NY, USA, pp. 1210–1217 .

hao, S., Ma, X., Zou, W., Bai, B., 2019. Deepcg: classifying metamorphic malware
through deep learning of call graphs. In: International Conference on Security

and Privacy in Communication Systems. Springer, Orlando, FL, USA, pp. 171–190 .
hong, F., Cheng, X., Yu, D., Gong, B., Song, S., Yu, J., 2020. MalFox: Camouflaged ad-

versarial malware example generation based on C-GANs against black-box de-
tectors. ArXiv preprint arXiv:2011.01509.

hu, S., Zhang, Z., Yang, L., Song, L., Wang, G., 2020. Benchmarking label dynamics

of virustotal engines. In: ACM SIGSAC Conference on Computer and Communi-
cations Security. ACM, Virtual Event, pp. 2081–2083 .

Xiang Ling is currently a Research Associate at the In-

stitute of Software, Chinese Academy of Sciences. He re-

ceived his Ph.D. degree from Zhejiang University in 2021.
His research interests include AI security, data-driven se-

curity, network/web security, and program analysis. His
work has been published at top-ranked conferences and

journals, like IEEE S&P, INFOCOM, TNNLS, TKDD, ICDCS,
ECCV, and TOPS.

Lingfei Wu is an Engineering Manager in the Content and
Knowledge Graph Group at Pinterest, where he is lead-

ing to build the next-generation Knowledge Graph to em-

power Pinterest recommendation/research systems across
all major surfaces including Homefeed, Search, Ads, etc.

He earned his Ph.D. degree in computer science from the
College of William and Mary in 2016. He has published

more than 90 top-ranked conference and journal papers
and is a co-inventor of more than 40 filed US patents. Be-

cause of the high commercial value of his patents, he has

received several invention achievement awards and has
been appointed as IBM Master Inventor, class of 2020. He

was the recipient of the Best Paper Award and Best Stu-
ent Paper Award of several conferences such as IEEE ICC’19, AAAI workshop on

LGMA’20, and KDD workshop on DLG’19. His research has been featured in numer-
us media outlets, including NatureNews, YahooNews, Venturebeat, and TechTalks.

e has co-organized 10+ conferences (KDD, AAAI, IEEE BigData) and is the found-

ng co-chair for Workshops of Deep Learning on Graphs (with AAAI’21, AAAI’20,
DD’20, KDD’19, and IEEE BigData’19). He has currently served as Associate Editor

or IEEE Transactions on Neural Networks and Learning Systems, ACM Transactions
n Knowledge Discovery from Data and International Journal of Intelligent Systems,

nd regularly served as an SPC/PC member of the following major AI/ML/NLP con-
erences including KDD, IJCAI, AAAI, NIPS, ICML, ICLR, and ACL.

Jiangyu Zhang is a graduate student at Zhejiang Univer-
sity. His research focuses on binary security and data-

driven security.

Zhenqing Qu is a graduate student at Zhejiang Univer-

sity. He is a member of the AAA CTF Team. His research

focuses on web security and data-driven security. He has
spoken at Black Hat 2022. Additionally, he has reported

several severe defects to mainstream WAF vendors, which
were confirmed and fixed quickly.
23
Wei Deng received his master degree in Computer

Science and Technology from Zhejiang University at
Hangzhou, China in 2022. He is now working in Ten-

cent Security Platform Department. His research mainly
focuses on network traffic security.

Xiang Chen received the B.Eng. and the M.Eng. degrees
from Fuzhou University in 2019 and 2022, respectively.

He is currently pursuing the Ph.D. degree with the Col-
lege of Computer Science and Technology, Zhejiang Uni-

versity, China. He has published papers in IEEE INFOCOM,

IEEE ICNP and so on. He received the Best Paper Award
from IEEE/ACM IWQoS 2021, and the Best Paper Candi-

date from IEEE INFOCOM 2021. His research interests in-
clude programmable networks and network security.

Yaguan Qian is a professor at the School of Big-data Sci-

ence, Zhejiang University of Science and Technology. He
received Ph.D. in Computer Science from Zhejiang Univer-

sity in 2014. He is currently a director of Hikvision-ZUST

Joint Laboratory of Edge Intelligent Security. He leads a
research team working on AI security, machine learning,

pattern recognition, and machine vision.

Chunming Wu received a Ph.D. degree in computer sci-
ence from Zhejiang University, Hangzhou, China, in 1995.

He is currently a Professor at the College of Computer Sci-

ence and Technology, Zhejiang University. His research in-
terests include software-defined networks, proactive net-

work defense, network virtualization, and intelligent net-
works.

Shouling Ji is a ZJU 100-Young Professor in the College
of Computer Science and Technology at Zhejiang Univer-

sity and a Research Faculty in the School of Electrical and
Computer Engineering at Georgia Institute of Technology

(Georgia Tech). He received a Ph.D. degree in Electrical
and Computer Engineering from Georgia Institute of Tech-

nology, a Ph.D. degree in Computer Science from Georgia

State University, and a B.S. (with Honors) and M.S. de-
grees both in Computer Science from Heilongjiang Uni-

versity. His current research interests include Data-driven
Security and Privacy, AI Security, and Big Data Analytics.

He is a member of ACM, IEEE, and CCF and was the Mem-
bership Chair of the IEEE Student Branch at Georgia State

niversity (2012–2013). He was a Research Intern at the IBM T. J. Watson Research

enter. Shouling is the recipient of the 2012 Chinese Government Award for Out-
tanding Self-Financed Students Abroad.

Tianyue Luo graduated from Beijing Information Science

and Technology University in 2012, he is a senior engi-
neer with the Institute of Software, Chinese Academy of

Sciences, Beijing. His primary research interests include

system security, vulnerability detection, and open source
software security.

http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0121
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0122
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0123
http://refhub.elsevier.com/S0167-4048(23)00044-5/sbref0124

X. Ling, L. Wu, J. Zhang et al. Computers & Security 128 (2023) 103134
Jingzheng Wu received the Ph.D. degree in computer

software and theory from the Institute of Software, Chi-
nese Academy of Sciences, Beijing, in 2012. He is a re-

search professor with the Institute of Software, Chinese
Academy of Sciences, Beijing. His primary research inter-

ests include system security, vulnerability detection, and

covert channels.
24
Yanjun Wu received the Ph.D. degree in computer soft-

ware and theory from the Institute of Software, Chinese
Academy of Sciences, Beijing, in 2006. He is currently a

Research Professor with the Institute of Software, Chinese
Academy of Sciences, Beijing. His current research inter-

ests include operating systems and system security.

	Adversarial attacks against Windows PE malware detection: A survey of the state-of-the-art
	1 Introduction
	2 Machine learning and deep learning for PE malware detection
	2.1 PE file layout and malware
	2.1.1 General layout of PE files
	2.1.2 PE malware

	2.2 Learning framework for PE malware detection
	2.2.1 Overview
	2.2.2 Data acquisition
	2.2.3 Feature engineering
	2.2.4 Learning from models and predictions

	3 Challenges of adversarial attacks for PE malware
	3.1 Adversarial attacks: The general concept and taxonomy
	3.1.1 Adversary’s space: Feature-space attack versus problem-space attack
	3.1.2 Adversary’s knowledge: White-box attack versus black-box attack

	3.2 Three unique challenges of adversarial attacks for PE malware: From feature-space to problem-space
	3.2.1 Challenge 1: Follow the format of PE files (format-preserving)
	3.2.2 Challenge 2: Keep the executability for PE files (executability-preserving)
	3.2.3 Challenge 3: Keep the same maliciousness for PE malware (maliciousness-preserving)

	4 Adversarial attacks against PE malware detection: The state of the art
	4.1 White-box adversarial attacks against PE malware detection
	4.1.1 Feature-space white-box attacks against PE malware detection
	4.1.2 Problem-space white-box attacks against PE malware detection

	4.2 Black-box adversarial attacks against PE malware detection
	4.2.1 Feature-space black-box attacks against PE malware detection
	4.2.2 Problem-space black-box attacks against PE malware detection

	4.3 Summary of adversarial attacks against PE malware detection

	5 Adversarial defenses for PE malware detection
	5.1 Adversarial training
	5.2 Other defense methods

	6 Discussions
	6.1 Beyond adversarial attacks
	6.1.1 Universal adversarial perturbation
	6.1.2 Training-time poisoning attacks
	6.1.3 Model steal attacks

	6.2 Future directions and opportunities
	6.2.1 Strong demands for robust PE malware detection
	6.2.2 Practical and efficient adversarial attacks against commercial anti-viruses in the wild
	6.2.3 Lack of benchmark platforms for research

	7 Conclusion
	Declaration of Competing Interest
	Acknowledgement
	References

