detect_rep/自己论文/article/test/refs-1.bib

589 lines
24 KiB
BibTeX
Raw Normal View History

2023-04-05 10:04:49 +08:00
@article{schmidhuber2015deep,
title={\href{https://www.sciencedirect.com/science/article/pii/S0893608014002135}{Deep learning in neural networks: An overview}},
author={Schmidhuber, J{\"u}rgen},
journal={Neural networks},
volume={61},
pages={85--117},
year={2015},
publisher={Elsevier}
}
@article{szegedy2013intriguing,
title={Intriguing properties of neural networks},
author={Szegedy, Christian and Zaremba, Wojciech and Sutskever, Ilya and Bruna, Joan and Erhan, Dumitru and Goodfellow, Ian and Fergus, Rob},
journal={arXiv preprint arXiv:\href{https://arxiv.org/abs/1312.6199}{1312.6199}},
year={2013}
}
@article{goodfellow2014explaining,
title={Explaining and harnessing adversarial examples},
author={Goodfellow, Ian J and Shlens, Jonathon and Szegedy, Christian},
journal={arXiv preprint arXiv:\href{https://arxiv.org/abs/1412.6572}{1412.6572}},
year={2014}
}
@inproceedings{papernot2016crafting,
title={\href{https://ieeexplore.ieee.org/abstract/document/7795300/}{Crafting adversarial input sequences for recurrent neural networks}},
author={Papernot, Nicolas and McDaniel, Patrick and Swami, Ananthram and Harang, Richard},
booktitle={MILCOM 2016-2016 IEEE Military Communications Conference},
pages={49--54},
year={2016},
organization={IEEE}
}
@article{ebrahimi2017hotflip,
title={Hotflip: White-box adversarial examples for text classification},
author={Ebrahimi, Javid and Rao, Anyi and Lowd, Daniel and Dou, Dejing},
journal={arXiv preprint arXiv:\href{https://arxiv.org/abs/1712.06751}{1712.06751}},
year={2017}
}
@inproceedings{gao2018black,
title={\href{https://ieeexplore.ieee.org/abstract/document/8424632/}{Black-box generation of adversarial text sequences to evade deep learning classifiers}},
author={Gao, Ji and Lanchantin, Jack and Soffa, Mary Lou and Qi, Yanjun},
booktitle={2018 IEEE Security and Privacy Workshops (SPW)},
pages={50--56},
year={2018},
organization={IEEE}
}
@inproceedings{maheshwary2021generating,
title={\href{https://ojs.aaai.org/index.php/AAAI/article/view/17595}{Generating natural language attacks in a hard label black box setting}},
author={Maheshwary, Rishabh and Maheshwary, Saket and Pudi, Vikram},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={35},
number={15},
pages={13525--13533},
year={2021}
}
@article{wang2022semattack,
title={{SemAttack: Natural Textual Attacks via Different Semantic Spaces}},
author={Wang, Boxin and Xu, Chejian and Liu, Xiangyu and Cheng, Yu and Li, Bo},
journal={arXiv preprint arXiv:\href{https://arxiv.org/abs/2205.01287}{2205.01287}},
year={2022}
}
@inproceedings{lee2022query,
title={\href{https://proceedings.mlr.press/v162/lee22h.html}{{Query-Efficient and Scalable Black-Box Adversarial Attacks on Discrete Sequential Data via Bayesian Optimization}}},
author={Lee, Deokjae and Moon, Seungyong and Lee, Junhyeok and Song, Hyun Oh},
booktitle={International Conference on Machine Learning},
pages={12478--12497},
year={2022},
organization={PMLR}
}
@article{whitley1994genetic,
title={\href{https://link.springer.com/article/10.1007/BF00175354}{A genetic algorithm tutorial}},
author={Whitley, Darrell},
journal={Statistics and computing},
volume={4},
number={2},
pages={65--85},
year={1994},
publisher={Springer}
}
@article{das2010differential,
title={\href{https://ieeexplore.ieee.org/abstract/document/5601760/}{Differential evolution: A survey of the state-of-the-art}},
author={Das, Swagatam and Suganthan, Ponnuthurai Nagaratnam},
journal={IEEE transactions on evolutionary computation},
volume={15},
number={1},
pages={4--31},
year={2010},
publisher={IEEE}
}
@article{ji2020Machine,
title={{Machine Learning Model Security and Privacy Research:A survey}},
author={Ji, Shouling and Du,Tianyu and Li, Jinfeng and Shen, Chao and Li, Bo},
journal={Journal of Software},
volume={32},
number={1},
pages={41--67},
year={2020}
}
@article{zhang2020adversarial,
title={\href{https://dl.acm.org/doi/abs/10.1145/3374217}{{Adversarial attacks on deep-learning models in natural language processing: A survey}}},
author={Zhang, Wei Emma and Sheng, Quan Z and Alhazmi, Ahoud and Li, Chenliang},
journal={ACM Transactions on Intelligent Systems and Technology (TIST)},
volume={11},
number={3},
pages={1--41},
year={2020},
publisher={ACM New York, NY, USA}
}
@article{wang2019towards,
title={{Towards a robust deep neural network in texts: A survey}},
author={Wang, Wenqi and Wang, Run and Wang, Lina and Wang, Zhibo and Ye, Aoshuang},
journal={arXiv preprint arXiv:\href{https://arxiv.org/abs/1902.07285}{1902.07285}},
year={2019}
}
@article{wang2021measure,
title={{Measure and Improve Robustness in NLP Models: A Survey}},
author={Wang, Xuezhi and Wang, Haohan and Yang, Diyi},
journal={arXiv preprint arXiv:\href{https://arxiv.org/abs/2112.08313}{2112.08313}},
year={2021}
}
@article{qiu2022adversarial,
title={\href{https://www.sciencedirect.com/science/article/pii/S0925231222003861}{{Adversarial attack and defense technologies in natural language processing: A survey}}},
author={Qiu, Shilin and Liu, Qihe and Zhou, Shijie and Huang, Wen},
journal={Neurocomputing},
volume={492},
pages={278--307},
year={2022},
publisher={Elsevier}
}
@article{liang2017deep,
title={Deep text classification can be fooled},
author={Liang, Bin and Li, Hongcheng and Su, Miaoqiang and Bian, Pan and Li, Xirong and Shi, Wenchang},
journal={arXiv preprint arXiv:\href{https://arxiv.org/abs/1704.08006}{1704.08006}},
year={2017}
}
@article{samanta2017towards,
title={Towards crafting text adversarial samples},
author={Samanta, Suranjana and Mehta, Sameep},
journal={arXiv preprint arXiv:\href{https://arxiv.org/abs/1707.02812}{1707.02812}},
year={2017}
}
@article{gong2018adversarial,
title={Adversarial texts with gradient methods},
author={Gong, Zhitao and Wang, Wenlu and Li, Bo and Song, Dawn and Ku, Wei-Shinn},
journal={arXiv preprint arXiv:\href{https://arxiv.org/abs/1801.07175}{1801.07175}},
year={2018}
}
@article{lei2019discrete,
title={\href{https://proceedings.mlsys.org/paper/2019/hash/d1fe173d08e959397adf34b1d77e88d7-Abstract.html}{Discrete adversarial attacks and submodular optimization with applications to text classification}},
author={Lei, Qi and Wu, Lingfei and Chen, Pin-Yu and Dimakis, Alex and Dhillon, Inderjit S and Witbrock, Michael J},
journal={Proceedings of Machine Learning and Systems},
volume={1},
pages={146--165},
year={2019}
}
@article{li2018textbugger,
title={Textbugger: Generating adversarial text against real-world applications},
author={Li, Jinfeng and Ji, Shouling and Du, Tianyu and Li, Bo and Wang, Ting},
journal={arXiv preprint arXiv:\href{https://arxiv.org/abs/1812.05271}{1812.05271}},
year={2018}
}
@article{alzantot2018generating,
title={Generating natural language adversarial examples},
author={Alzantot, Moustafa and Sharma, Yash and Elgohary, Ahmed and Ho, Bo-Jhang and Srivastava, Mani and Chang, Kai-Wei},
journal={arXiv preprint arXiv:\href{https://arxiv.org/abs/1804.07998}{1804.07998}},
year={2018}
}
@inproceedings{ren2019generating,
title={\href{https://aclanthology.org/P19-1103/?amp=1}{Generating natural language adversarial examples through probability weighted word saliency}},
author={Ren, Shuhuai and Deng, Yihe and He, Kun and Che, Wanxiang},
booktitle={Proceedings of the 57th annual meeting of the association for computational linguistics},
pages={1085--1097},
year={2019}
}
@article{zang2019word,
title={Word-level textual adversarial attacking as combinatorial optimization},
author={Zang, Yuan and Qi, Fanchao and Yang, Chenghao and Liu, Zhiyuan and Zhang, Meng and Liu, Qun and Sun, Maosong},
journal={arXiv preprint arXiv:\href{https://arxiv.org/abs/1910.12196}{1910.12196}},
year={2019}
}
@article{garg2020bae,
title={Bae: Bert-based adversarial examples for text classification},
author={Garg, Siddhant and Ramakrishnan, Goutham},
journal={arXiv preprint arXiv:\href{https://arxiv.org/abs/2004.01970}{2004.01970}},
year={2020}
}
@inproceedings{jin2020bert,
title={\href{https://ojs.aaai.org/index.php/AAAI/article/view/6311}{Is bert really robust? a strong baseline for natural language attack on text classification and entailment}},
author={Jin, Di and Jin, Zhijing and Zhou, Joey Tianyi and Szolovits, Peter},
booktitle={Proceedings of the AAAI conference on artificial intelligence},
volume={34},
number={05},
pages={8018--8025},
year={2020}
}
@article{qin2022fuzzing,
title={\href{https://www.sciencedirect.com/science/article/pii/S016740482200092X}{{Fuzzing-based hard-label black-box attacks against machine learning models}}},
author={Qin, Yi and Yue, Chuan},
journal={Computers \& Security},
volume={117},
pages={102694},
year={2022},
publisher={Elsevier}
}
@article{li2020bert,
title={Bert-attack: Adversarial attack against bert using bert},
author={Li, Linyang and Ma, Ruotian and Guo, Qipeng and Xue, Xiangyang and Qiu, Xipeng},
journal={arXiv preprint arXiv:\href{https://arxiv.org/abs/2004.09984}{2004.09984}},
year={2020}
}
@article{radford2019language,
title={\href{https://github.com/openai/gpt-2}{Language models are unsupervised multitask learners}},
author={Radford, Alec and Wu, Jeffrey and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya and others},
journal={OpenAI blog},
volume={1},
number={8},
pages={9},
year={2019}
}
@article{maheshwary2021strong,
title={A Strong Baseline for Query Efficient Attacks in a Black Box Setting},
author={Maheshwary, Rishabh and Maheshwary, Saket and Pudi, Vikram},
journal={arXiv preprint arXiv:\href{https://arxiv.org/abs/2109.04775}{2109.04775}},
year={2021}
}
@article{saxena2020textdecepter,
title={Textdecepter: Hard label black box attack on text classifiers},
author={Saxena, Sachin},
journal={arXiv preprint arXiv:\href{https://arxiv.org/abs/2008.06860}{2008.06860}},
year={2020}
}
@article{pang2002thumbs,
title={Thumbs up? Sentiment classification using machine learning techniques},
author={Pang, Bo and Lee, Lillian and Vaithyanathan, Shivakumar},
journal={arXiv preprint \href{https://arxiv.org/abs/cs/0205070}{cs/0205070}},
year={2002}
}
@article{zhang2015character,
title={\href{https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html}{Character-level convolutional networks for text classification}},
author={Zhang, Xiang and Zhao, Junbo and LeCun, Yann},
journal={Advances in neural information processing systems},
volume={28},
year={2015}
}
@article{bowman2015large,
title={A large annotated corpus for learning natural language inference},
author={Bowman, Samuel R and Angeli, Gabor and Potts, Christopher and Manning, Christopher D},
journal={arXiv preprint arXiv:\href{https://arxiv.org/abs/1508.05326}{1508.05326}},
year={2015}
}
@article{hosseini2017deceiving,
title={Deceiving google's perspective api built for detecting toxic comments},
author={Hosseini, Hossein and Kannan, Sreeram and Zhang, Baosen and Poovendran, Radha},
journal={arXiv preprint arXiv:\href{https://arxiv.org/abs/1702.08138}{1702.08138}},
year={2017}
}
@inproceedings{morris2020textattack,
title={\href{https://arxiv.org/abs/2005.05909}{TextAttack}: A Framework for Adversarial Attacks, Data Augmentation, and Adversarial Training in NLP},
author={Morris, John and Lifland, Eli and Yoo, Jin Yong and Grigsby, Jake and Jin, Di and Qi, Yanjun},
booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations},
pages={119--126},
year={2020}
}
@article{pang2005seeing,
title={Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales},
author={Pang, Bo and Lee, Lillian},
journal={arXiv preprint \href{https://arxiv.org/abs/cs/0506075}{cs/0506075}},
year={2005}
}
@article{xu2023adversarial,
title={\href{https://www.sciencedirect.com/science/article/pii/S143484112200348X}{{Adversarial attacks and active defense on deep learning based identification of GaN power amplifiers under physical perturbation}}},
author={Xu, Yuqing and Xu, Guangxia and An, Zeliang and Nielsen, Martin Hedegaard and Shen, Ming},
journal={AEU-International Journal of Electronics and Communications},
volume={159},
pages={154478},
year={2023},
publisher={Elsevier}
}
@article{xu2020community,
title={\href{https://ieeexplore.ieee.org/abstract/document/9146414}{{A community detection method based on local optimization in social networks}}},
author={Xu, Guangxia and Wu, Xinkai and Liu, Jun and Liu, Yanbing},
journal={Ieee Network},
volume={34},
number={4},
pages={42--48},
year={2020},
publisher={IEEE}
}
@inproceedings{maas2011learning,
title={\href{https://aclanthology.org/P11-1015.pdf}{Learning word vectors for sentiment analysis}},
author={Maas, Andrew and Daly, Raymond E and Pham, Peter T and Huang, Dan and Ng, Andrew Y and Potts, Christopher},
booktitle={Proceedings of the 49th annual meeting of the association for computational linguistics: Human language technologies},
pages={142--150},
year={2011}
}
@article{williams2017broad,
title={A broad-coverage challenge corpus for sentence understanding through inference},
author={Williams, Adina and Nangia, Nikita and Bowman, Samuel R},
journal={arXiv preprint arXiv:\href{https://arxiv.org/abs/1704.05426}{1704.05426}},
year={2017}
}
@inproceedings{socher2013recursive,
title={\href{https://aclanthology.org/D13-1170.pdf}{Recursive deep models for semantic compositionality over a sentiment treebank}},
author={Socher, Richard and Perelygin, Alex and Wu, Jean and Chuang, Jason and Manning, Christopher D and Ng, Andrew Y and Potts, Christopher},
booktitle={Proceedings of the 2013 conference on empirical methods in natural language processing},
pages={1631--1642},
year={2013}
}
@article{warstadt2019neural,
title={\href{https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00290/43528/Neural-Network-Acceptability-Judgments}{Neural network acceptability judgments}},
author={Warstadt, Alex and Singh, Amanpreet and Bowman, Samuel R},
journal={Transactions of the Association for Computational Linguistics},
volume={7},
pages={625--641},
year={2019},
publisher={MIT Press}
}
@inproceedings{haque2018sentiment,
title={Sentiment analysis on large scale Amazon product reviews},
author={Haque, Tanjim Ul and Saber, Nudrat Nawal and Shah, Faisal Muhammad},
booktitle={2018 IEEE international conference on innovative research and development (ICIRD)},
pages={1--6},
year={2018},
organization={IEEE}
}
@inproceedings{lhoest-etal-2021-datasets,
title = "Datasets: A Community Library for Natural Language Processing",
author = "Lhoest, Quentin and
Villanova del Moral, Albert and
Jernite, Yacine and
Thakur, Abhishek and
von Platen, Patrick and
Patil, Suraj and
Chaumond, Julien and
Drame, Mariama and
Plu, Julien and
Tunstall, Lewis and
Davison, Joe and
{\v{S}}a{\v{s}}ko, Mario and
Chhablani, Gunjan and
Malik, Bhavitvya and
Brandeis, Simon and
Le Scao, Teven and
Sanh, Victor and
Xu, Canwen and
Patry, Nicolas and
McMillan-Major, Angelina and
Schmid, Philipp and
Gugger, Sylvain and
Delangue, Cl{\'e}ment and
Matussi{\`e}re, Th{\'e}o and
Debut, Lysandre and
Bekman, Stas and
Cistac, Pierric and
Goehringer, Thibault and
Mustar, Victor and
Lagunas, Fran{\c{c}}ois and
Rush, Alexander and
Wolf, Thomas",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-demo.21",
pages = "175--184",
abstract = "The scale, variety, and quantity of publicly-available NLP datasets has grown rapidly as researchers propose new tasks, larger models, and novel benchmarks. Datasets is a community library for contemporary NLP designed to support this ecosystem. Datasets aims to standardize end-user interfaces, versioning, and documentation, while providing a lightweight front-end that behaves similarly for small datasets as for internet-scale corpora. The design of the library incorporates a distributed, community-driven approach to adding datasets and documenting usage. After a year of development, the library now includes more than 650 unique datasets, has more than 250 contributors, and has helped support a variety of novel cross-dataset research projects and shared tasks. The library is available at https://github.com/huggingface/datasets.",
eprint={2109.02846},
archivePrefix={arXiv},
primaryClass={cs.CL},
}
@inproceedings{kim-2014-convolutional,
title = "Convolutional Neural Networks for Sentence Classification",
author = "Kim, Yoon",
booktitle = "Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing ({EMNLP})",
month = oct,
year = "2014",
address = "Doha, Qatar",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D14-1181",
doi = "10.3115/v1/D14-1181",
pages = "1746--1751",
}
@article{hochreiter1997long,
title={\href{https://ieeexplore.ieee.org/abstract/document/6795963/}{Long short-term memory}},
author={Hochreiter, Sepp and Schmidhuber, J{\"u}rgen},
journal={Neural computation},
volume={9},
number={8},
pages={1735--1780},
year={1997},
publisher={MIT Press}
}
@article{devlin2018bert,
title={Bert: Pre-training of deep bidirectional transformers for language understanding},
author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina},
journal={arXiv preprint arXiv:\href{https://arxiv.org/abs/1810.04805}{1810.04805}},
year={2018}
}
@article{lan2019albert,
title={Albert: A lite bert for self-supervised learning of language representations},
author={Lan, Zhenzhong and Chen, Mingda and Goodman, Sebastian and Gimpel, Kevin and Sharma, Piyush and Soricut, Radu},
journal={arXiv preprint arXiv:\href{https://arxiv.org/abs/1909.11942}{1909.11942}},
year={2019}
}
@article{sanh2019distilbert,
title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter},
author={Sanh, Victor and Debut, Lysandre and Chaumond, Julien and Wolf, Thomas},
journal={arXiv preprint arXiv:\href{https://arxiv.org/abs/1910.01108}{1910.01108},
year={2019}
}
@article{liu2019roberta,
title={Roberta: A robustly optimized bert pretraining approach},
author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin},
journal={arXiv preprint arXiv:\href{https://arxiv.org/abs/1907.11692}{1907.11692}},
year={2019}
}
@article{joulin2016fasttext,
title={FastText.zip: Compressing text classification models},
author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Douze, Matthijs and J{\'e}gou, H{\'e}rve and Mikolov, Tomas},
journal={arXiv preprint arXiv:\href{https://arxiv.org/abs/1612.03651}{1612.03651}},
year={2016}
}
@article{gardner2018allennlp,
title={Allennlp: A deep semantic natural language processing platform},
author={Gardner, Matt and Grus, Joel and Neumann, Mark and Tafjord, Oyvind and Dasigi, Pradeep and Liu, Nelson and Peters, Matthew and Schmitz, Michael and Zettlemoyer, Luke},
journal={arXiv preprint arXiv:\href{https://arxiv.org/abs/1803.07640}{1803.07640}},
year={2018}
}
@article{cer2018universal,
title={Universal sentence encoder},
author={Cer, Daniel and Yang, Yinfei and Kong, Sheng-yi and Hua, Nan and Limtiaco, Nicole and John, Rhomni St and Constant, Noah and Guajardo-Cespedes, Mario and Yuan, Steve and Tar, Chris and others},
journal={arXiv preprint arXiv:\href{https://arxiv.org/abs/1803.11175}{1803.11175}},
year={2018}
}
@inproceedings{bird2006nltk,
title={\href{https://aclanthology.org/P06-4018.pdf}{NLTK: the natural language toolkit}},
author={Bird, Steven},
booktitle={Proceedings of the COLING/ACL 2006 Interactive Presentation Sessions},
pages={69--72},
year={2006}
}
@article{kwon2022ensemble,
title={\href{https://www.sciencedirect.com/science/article/pii/S0167404822000931}{Ensemble transfer attack targeting text classification systems}},
author={Kwon, Hyun and Lee, Sanghyun},
journal={Computers \& Security},
volume={117},
pages={102695},
year={2022},
publisher={Elsevier}
}
@article{shao2022triggers,
title={\href{https://www.sciencedirect.com/science/article/pii/S0167404822001250}{The triggers that open the NLP model backdoors are hidden in the adversarial samples}},
author={Shao, Kun and Zhang, Yu and Yang, Junan and Li, Xiaoshuai and Liu, Hui},
journal={Computers \& Security},
volume={118},
pages={102730},
year={2022},
publisher={Elsevier}
}\textbf{}
@article{panduro2009comparison,
title={\href{https://www.jpier.org/issues/volume.html?paper=09011308}{{A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays}}},
author={Panduro, Marco A and Brizuela, Carlos A and Balderas, Luz I and Acosta, Diana A},
journal={Progress In Electromagnetics Research B},
volume={13},
pages={171--186},
year={2009},
publisher={EMW Publishing}
}
@inproceedings{vesterstrom2004comparative,
title={\href{https://ieeexplore.ieee.org/abstract/document/1331139}{{A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems}}},
author={Vesterstrom, Jakob and Thomsen, Rene},
booktitle={Proceedings of the 2004 congress on evolutionary computation (IEEE Cat. No. 04TH8753)},
volume={2},
pages={1980--1987},
year={2004},
organization={IEEE}
}
@article{karabouga2004simple,
title={\href{https://journals.tubitak.gov.tr/elektrik/vol12/iss1/5/}{{A simple and global optimization algorithm for engineering problems: differential evolution algorithm}}},
author={Karabo{\u{g}}a, Dervi{\c{s}} and {\"O}kdem, Sel{\c{c}}uk},
journal={Turkish Journal of Electrical Engineering and Computer Sciences},
volume={12},
number={1},
pages={53--60},
year={2004}
}
@article{alatas2020comparative,
title={\href{https://www.researchgate.net/publication/349021169_Comparative_Assessment_Of_Light-based_Intelligent_Search_And_Optimization_Algorithms}{{COMPARATIVE ASSESSMENT OF LIGHT-BASED INTELLIGENT SEARCH AND OPTIMIZATION ALGORITHMS.}}},
author={Alatas, Bilal and Bingol, Harun},
journal={Light \& Engineering},
volume={28},
number={6},
year={2020}
}
@article{shafiq2020selection,
title={\href{https://www.sciencedirect.com/science/article/abs/pii/S0167739X19334880}{{\textcolor{red}{Selection of effective machine learning algorithm and Bot-IoT attacks traffic identification for internet of things in smart city}}}},
author={Shafiq, Muhammad and Tian, Zhihong and Sun, Yanbin and Du, Xiaojiang and Guizani, Mohsen},
journal={Future Generation Computer Systems},
volume={107},
pages={433--442},
year={2020},
publisher={Elsevier}
}
@article{akyol2017plant,
title={\href{https://ieeexplore.ieee.org/abstract/document/1331139}{{Plant intelligence based metaheuristic optimization algorithms}}},
author={Akyol, Sinem and Alatas, Bilal},
journal={Artificial Intelligence Review},
volume={47},
number={4},
pages={417--462},
year={2017},
publisher={Springer}
}
@INPROCEEDINGS{9897705,
author={Wang, Dan and Lin, Jiayu and Wang, Yuan-Gen},
booktitle={\href{https://ieeexplore.ieee.org/abstract/document/9897705}{2022 IEEE International Conference on Image Processing (ICIP)}},
title={{Query-Efficient Adversarial Attack Based On Latin Hypercube Sampling}},
year={2022},
volume={},
number={},
pages={546-550},
doi={10.1109/ICIP46576.2022.9897705}}